Advertisement

Antonie van Leeuwenhoek

, Volume 104, Issue 4, pp 451–466 | Cite as

The PVC superphylum: exceptions to the bacterial definition?

  • John A. FuerstEmail author
Original Paper

Abstract

The PVC superphylum is a grouping of distinct phyla of the domain bacteria proposed initially on the basis of 16S rRNA gene sequence analysis. It consists of a core of phyla Planctomycetes, Verrucomicrobia and Chlamydiae, but several other phyla have been considered to be members, including phylum Lentisphaerae and several other phyla consisting only of yet-to-be cultured members. The genomics-based links between Planctomycetes, Verrucomicrobia and Chlamydiae have been recently strengthened, but there appear to be other features which may confirm the relationship at least of Planctomycetes, Verrucomicrobia and Lentisphaerae. Remarkably these include the unique planctomycetal compartmentalized cell plan differing from the cell organization typical for bacteria. Such a shared cell plan suggests that the common ancestor of the PVC superphylum members may also have been compartmentalized, suggesting this is an evolutionarily homologous feature at least within the superphylum. Both the PVC endomembranes and the eukaryote-homologous membrane-coating MC proteins linked to endocytosis ability in Gemmata obscuriglobus and shared by PVC members suggest such homology may extend beyond the bacteria to the Eukarya. If so, either our definition of bacteria may have to change or PVC members admitted to be exceptions. The cases for and against considering the PVC superphylum members as exceptions to the bacteria are discussed, and arguments for them as exceptions presented. Recent critical analysis has favoured convergence and analogy for explaining eukaryote-like features in planctomycetes and other PVC organisms. The case is made for constructing hypotheses leaving the possibility of homology and evolutionary links to eukaryote features open. As the case of discovery of endocytosis-like protein uptake in planctomycetes has suggested, this may prove a strong basis for the immediate future of experimental research programs in the PVC scientific community.

Keywords

PVC superphylum Planctomycetes Verrucomicrobia Chlamydia Lentisphaerae Compartmentalization 

References

  1. Albrecht W, Fischer A et al (1987) Verrucomicrobium spinosum, an eubacterium representing an ancient line of descent. Syst Appl Microbiol 10:57–62CrossRefGoogle Scholar
  2. Belzer C, de Vos WM (2012) Microbes inside—from diversity to function: the case of Akkermansia. ISME J 6(8):1449–1458PubMedCrossRefGoogle Scholar
  3. Bode HB, Zeggel B et al (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47(2):471–481PubMedCrossRefGoogle Scholar
  4. Chistoserdova L, Jenkins C et al (2004) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21(7):1234–1241PubMedCrossRefGoogle Scholar
  5. Cho JC, Vergin KL et al (2004) Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 6(6):611–621PubMedCrossRefGoogle Scholar
  6. Choi A, Yang SJ et al (2013) Lentisphaera marina sp. nov., and emended description of the genus Lentisphaera. Int J Syst Evol Microbiol 63(Pt 4):1540–1544PubMedCrossRefGoogle Scholar
  7. Choo YJ, Lee K et al (2007) Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum Verrucomicrobia. Int J Syst Evol Microbiol 57(Pt 3):532–537PubMedCrossRefGoogle Scholar
  8. de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8(5):395–403PubMedCrossRefGoogle Scholar
  9. DeGrasse JA, DuBois KN et al (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8(9):2119–2130PubMedCrossRefGoogle Scholar
  10. Devos DP (2012) Regarding the presence of membrane coat proteins in bacteria: confusion? What confusion? BioEssays 34(1):38–39PubMedCrossRefGoogle Scholar
  11. Devos D, Dokudovskaya S et al (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2(12):e380PubMedCrossRefGoogle Scholar
  12. Dunfield PF, Yuryev A et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882PubMedCrossRefGoogle Scholar
  13. Dunfield PF, Tamas I et al (2012) Electing a candidate: a speculative history of the bacterial phylum OP10. Environ Microbiol 14(12):3069–3080PubMedCrossRefGoogle Scholar
  14. Everard A, Belzer C et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071PubMedCrossRefGoogle Scholar
  15. Fieseler L, Horn M et al (2004) Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl Environ Microbiol 70(6):3724–3732PubMedCrossRefGoogle Scholar
  16. Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328PubMedCrossRefGoogle Scholar
  17. Fuerst JA, Sagulenko E (2010) Protein uptake by bacteria: an endocytosis-like process in the planctomycete Gemmata obscuriglobus. Commun Integr Biol 3(6):572–575PubMedCrossRefGoogle Scholar
  18. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9(6):403–413PubMedCrossRefGoogle Scholar
  19. Fuerst JA, Sagulenko E (2012) Keys to eukaryality: planctomycetes and ancestral evolution of cellular complexity. Front Microbiol 3:167PubMedCrossRefGoogle Scholar
  20. Fuerst JA, Sagulenko E (2013) Nested bacterial boxes: nuclear and other intracellular compartments in planctomycetes. J Mol Microbiol Biotechnol 23(1–2):95–103PubMedCrossRefGoogle Scholar
  21. Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88(18):8184–8188PubMedCrossRefGoogle Scholar
  22. Glockner FO, Kube M et al (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100(14):8298–8303PubMedCrossRefGoogle Scholar
  23. Glockner J, Kube M et al (2010) Phylogenetic diversity and metagenomics of candidate division OP3. Environ Microbiol 12(5):1218–1229PubMedCrossRefGoogle Scholar
  24. Greub G, Raoult D (2002) Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl Environ Microbiol 68(6):3076–3084PubMedCrossRefGoogle Scholar
  25. Griffiths E, Gupta RS (2007) Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology 153(Pt 8):2648–2654PubMedCrossRefGoogle Scholar
  26. Gupta RS (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26CrossRefGoogle Scholar
  27. Gupta RS, Bhandari V et al (2012) Molecular signatures for the PVC clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of bacteria provide insights into their evolutionary relationships. Front Microbiol 3:327PubMedGoogle Scholar
  28. Hedlund BP, Gosink JJ et al (1997) Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie Van Leeuwenhoek 72(1):29–38PubMedCrossRefGoogle Scholar
  29. Hou S, Makarova KS et al (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26PubMedCrossRefGoogle Scholar
  30. Hugenholtz P, Goebel BM et al (1998a) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774PubMedGoogle Scholar
  31. Hugenholtz P, Pitulle C et al (1998b) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180(2):366–376PubMedGoogle Scholar
  32. Jenkins C, Kedar V et al (2002) Gene discovery within the planctomycete division of the domain bacteria using sequence tags from genomic DNA libraries. Genome Biol 3(6): RESEARCH0031Google Scholar
  33. Jenkins C, Samudrala R et al (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci USA 99(26):17049–17054PubMedCrossRefGoogle Scholar
  34. Jogler C, Glockner FO et al (2011) Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl Environ Microbiol 77(16):5826–5829PubMedCrossRefGoogle Scholar
  35. Jogler C, Waldmann J et al (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194(23):6419–6430PubMedCrossRefGoogle Scholar
  36. Kamneva OK, Liberles DA et al (2010) Genome-wide influence of indel substitutions on evolution of bacteria of the PVC superphylum, revealed using a novel computational method. Genome Biol Evol 2:870–886PubMedCrossRefGoogle Scholar
  37. Kamneva OK, Knight SJ et al (2012) Analysis of genome content evolution in PVC bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle. Genome Biol Evol 4(12):1375–1390PubMedCrossRefGoogle Scholar
  38. Khadem AF, Pol A et al (2010) Nitrogen fixation by the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. Microbiology 156(Pt 4):1052–1059PubMedCrossRefGoogle Scholar
  39. König E, Schlesner H et al (1984) Cell-wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138(3):200–205CrossRefGoogle Scholar
  40. Kostanjsek R, Strus J et al (2004) Candidatus Rhabdochlamydia porcellionis, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol 54(Pt 2):543–549PubMedCrossRefGoogle Scholar
  41. Kulichevskaya IS, Baulina OI et al (2009) Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 59(Pt 2):357–364PubMedCrossRefGoogle Scholar
  42. Lee KC, Webb RI et al (2009) Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol 9:5PubMedCrossRefGoogle Scholar
  43. Lienard J, Croxatto A et al (2011) Estrella lausannensis, a new star in the Chlamydiales order. Microbes Infect 13(14–15):1232–1241PubMedCrossRefGoogle Scholar
  44. Liesack W, Stackebrandt E (1989) Evidence for unlinked rrn operons in the planctomycete Pirellula marina. J Bacteriol 171(9):5025–5030PubMedGoogle Scholar
  45. Liesack W, Konig H et al (1986) Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group. Arch Microbiol 145(4):361–366CrossRefGoogle Scholar
  46. Limam RD, Bouchez T et al (2010) Detection of WWE2-related Lentisphaerae by 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate. Can J Microbiol 56(10):846–852PubMedCrossRefGoogle Scholar
  47. Lindsay MR, Webb RI et al (1995) Effects of fixative and buffer on morphology and ultrastructure of a fresh-water planctomycete, Gemmata obscuriglobus. J Microbiol Methods 21(1):45–54CrossRefGoogle Scholar
  48. Lindsay MR, Webb RI et al (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143:739–748CrossRefGoogle Scholar
  49. Lindsay MR, Webb RI et al (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175(6):413–429PubMedCrossRefGoogle Scholar
  50. Lonhienne TG, Sagulenko E et al (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107(29):12883–12888PubMedCrossRefGoogle Scholar
  51. Martin-Galiano AJ, Oliva MA et al (2011) Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor. J Biol Chem 286(22):19789–19803PubMedCrossRefGoogle Scholar
  52. McCoy AJ, Adams NE et al (2006) l, l-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci USA 103(47):17909–17914PubMedCrossRefGoogle Scholar
  53. McInerney JO, Martin WF et al (2011) Planctomycetes and eukaryotes: a case of analogy not homology. BioEssays 33(11):810–817PubMedCrossRefGoogle Scholar
  54. Ouellette SP, Karimova G et al (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85(1):164–178PubMedCrossRefGoogle Scholar
  55. Palleja A, Garcia-Vallve S et al (2009) Adaptation of the short intergenic spacers between co-directional genes to the Shine-Dalgarno motif among prokaryote genomes. BMC Genomics 10:537PubMedCrossRefGoogle Scholar
  56. Patt TE, Hanson RS (1978) Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol 134(2):636–644PubMedGoogle Scholar
  57. Pearson A, Budin M et al (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 100(26):15352–15357PubMedCrossRefGoogle Scholar
  58. Pilhofer M, Rosati G et al (2007) Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol Biol Evol 24(7):1439–1442PubMedCrossRefGoogle Scholar
  59. Pilhofer M, Rappl K et al (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J Bacteriol 190(9):3192–3202PubMedCrossRefGoogle Scholar
  60. Pilhofer M, Ladinsky MS et al (2011) Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 9(12):e1001213PubMedCrossRefGoogle Scholar
  61. Pol A, Heijmans K et al (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450(7171):874–878PubMedCrossRefGoogle Scholar
  62. Qiu YL, Muramatsu M et al (2013) Oligosphaera ethanolica gen. nov., sp. nov., an anaerobic, carbohydrate-fermenting bacterium isolated from methanogenic sludge, and description of Oligosphaeria classis nov. in the phylum Lentisphaerae. Int J Syst Evol Microbiol 63(Pt 2):533–539PubMedCrossRefGoogle Scholar
  63. Rinke C, Schwientek P et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437Google Scholar
  64. Santarella-Mellwig R, Franke J et al (2010) The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8(1):e1000281PubMedCrossRefGoogle Scholar
  65. Santarella-Mellwig R, Pruggnaller S et al (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11(5):e1001565PubMedCrossRefGoogle Scholar
  66. Schlesner H (1987) Verrucomicrobium spinosum gen. nov., sp.nov., a fimbriated prosthecate bacterium. Syst Appl Microbiol 10:54–56CrossRefGoogle Scholar
  67. Schlieper D, Oliva MA et al (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA 102(26):9170–9175PubMedCrossRefGoogle Scholar
  68. Schouten S, Bowman JP et al (2000) Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiol Lett 186(2):193–195PubMedCrossRefGoogle Scholar
  69. Sinninghe Damste JS, Rijpstra WI et al (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J 272(16):4270–4283PubMedCrossRefGoogle Scholar
  70. Speth DR, van Teeseling MC et al (2012) Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in planctomycetes and verrucomicrobia. Front Microbiol 3:304PubMedGoogle Scholar
  71. Stackebrandt E, Wehmeyer U et al (1986) 16S ribosomal RNA- and cell wall analysis of Gemmata obscuriglobus, a new member of the order Planctomycetales. FEMS Microbiol Lett 37(3):289–292CrossRefGoogle Scholar
  72. Staley JT, Bouzek H et al (2005) Eukaryotic signature proteins of Prosthecobacter dejongeii and Gemmata sp. Wa-1 as revealed by in silico analysis. FEMS Microbiol Lett 243(1):9–14PubMedCrossRefGoogle Scholar
  73. Strous M, Pelletier E et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440(7085):790–794PubMedCrossRefGoogle Scholar
  74. Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18(10):464–470PubMedCrossRefGoogle Scholar
  75. Teeling H, Lombardot T et al (2004) Evaluation of the phylogenetic position of the planctomycete Rhodopirellula baltica SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees. Int J Syst Evol Microbiol 54(Pt 3):791–801PubMedCrossRefGoogle Scholar
  76. Teh AH, Saito JA et al (2011) Hell’s Gate globin I: an acid and thermostable bacterial hemoglobin resembling mammalian neuroglobin. FEBS Lett 585(20):3250–3258PubMedCrossRefGoogle Scholar
  77. Thomas V, Casson N et al (2006) Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 8(12):2125–2135PubMedCrossRefGoogle Scholar
  78. Thrash JC, Cho JC et al (2010) Genome sequence of Lentisphaera araneosa HTCC2155T, the type species of the order Lentisphaerales in the phylum Lentisphaerae. J Bacteriol 192(11):2938–2939PubMedCrossRefGoogle Scholar
  79. van Niftrik L, Jetten MS (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76(3):585–596PubMedCrossRefGoogle Scholar
  80. van Niftrik LA, Fuerst JA et al (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233(1):7–13PubMedCrossRefGoogle Scholar
  81. van Niftrik L, Geerts WJ et al (2008) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190(2):708–717PubMedCrossRefGoogle Scholar
  82. van Niftrik L, van Helden M et al (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium Candidatus Kuenenia stuttgartiensis. Mol Microbiol 77(3):701–715PubMedCrossRefGoogle Scholar
  83. van Teeseling MC, Neumann S et al (2013) The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria. J Mol Microbiol Biotechnol 23(1–2):104–117PubMedCrossRefGoogle Scholar
  84. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60(5):495–506PubMedGoogle Scholar
  85. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17(3):241–249PubMedCrossRefGoogle Scholar
  86. Wang J, Jenkins C et al (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl Environ Microbiol 68(1):417–422PubMedCrossRefGoogle Scholar
  87. Weisburg WG, Hatch TP et al (1986) Eubacterial origin of chlamydiae. J Bacteriol 167(2):570–574PubMedGoogle Scholar
  88. Welter-Stahl L, Ojcius DM et al (2006) Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 8(6):1047–1057PubMedCrossRefGoogle Scholar
  89. Wertz JT, Kim E et al (2012) Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol 78(5):1544–1555PubMedCrossRefGoogle Scholar
  90. Wolf YI, Rogozin IB et al (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8PubMedCrossRefGoogle Scholar
  91. Yee B, Lafi FF et al (2007) A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the Bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species. BMC Evol Biol 7:37PubMedCrossRefGoogle Scholar
  92. Yee B, Sagulenko E et al (2011) Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. Microbiology 157(Pt 7):2012–2021PubMedCrossRefGoogle Scholar
  93. Yee B, Sagulenko E et al (2012) Electron tomography of the nucleoid of Gemmata obscuriglobus reveals complex liquid crystalline cholesteric structure. Front Microbiol 3:326PubMedCrossRefGoogle Scholar
  94. Yen TY, Pal S et al (2005) Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Biochemistry 44(16):6250–6256PubMedCrossRefGoogle Scholar
  95. Yildirim S, Yeoman CJ et al (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE 5(11):e13963PubMedCrossRefGoogle Scholar
  96. Yoon J, Matsuo Y et al (2007a) Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum Verrucomicrobia, isolated from marine sand. Int J Syst Evol Microbiol 57(Pt 9):2067–2072PubMedCrossRefGoogle Scholar
  97. Yoon J, Yasumoto-Hirose M et al (2007b) Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum Verrucomicrobia isolated from seawater in Japan. Int J Syst Evol Microbiol 57(Pt 5):959–963PubMedCrossRefGoogle Scholar
  98. Yoon J, Yasumoto-Hirose M et al (2007c) Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum Verrucomicrobia, isolated from seawater by in situ cultivation. Int J Syst Evol Microbiol 57(Pt 7):1377–1385PubMedCrossRefGoogle Scholar
  99. Zoetendal EG, Plugge CM et al (2003) Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53(Pt 1):211–215PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations