Antonie van Leeuwenhoek

, Volume 104, Issue 3, pp 283–300 | Cite as

Biogenesis of [Fe–S] cluster in Firmicutes: an unexploited field of investigation

  • Gustavo Pelicioli Riboldi
  • Eduardo Preusser de Mattos
  • Jeverson Frazzon
Review Paper


Iron–sulfur clusters (ISC) ([Fe–S]) are evolutionarily ancient and ubiquitous inorganic prosthetic groups present in almost all living organisms, whose biosynthetic assembly is dependent on complex protein machineries. [Fe–S] clusters are involved in biologically important processes, ranging from electron transfer catalysis to transcriptional regulatory roles. Three different systems involved in [Fe–S] cluster assembly have already been characterized in Proteobacteria, namely, the nitrogen fixation system, the ISC system and the sulfur assimilation system. Although they are well described in various microorganisms, these machineries are poorly characterized in members of the Firmicutes phylum, to which several groups of pathogenic bacteria belong. Recently, several research groups have made efforts to elucidate the biogenesis of [Fe–S] clusters at the molecular level in Firmicutes, and many important characteristics have been described. Considering the pivotal role of [Fe–S] clusters in a number of biological processes, the review presented here focuses on the description of the biosynthetic machineries for [Fe–S] cluster biogenesis in prokaryotes, followed by a discussion on recent results observed for Firmicutes [Fe–S] cluster assembly.


[Fe–S] cluster biogenesis ISC machinery SUF machinery Firmicutes 

Supplementary material

10482_2013_9966_MOESM1_ESM.png (817 kb)
Predicted SufU protein lengths encoded by Firmicutes species. The figure represents the same microorganisms depicted in Fig. 3. Horizontal green bars represent the predicted polypeptide lengths of the sequences analyzed. AA: number of amino acids. (PNG 817 kb)
10482_2013_9966_MOESM2_ESM.png (640 kb)
Maximum likelihood analysis of IscU-like proteins distribution among Firmicutes. Left: Representative Firmicutes species encoding putative protein sequences homologous to Escherichia coli IscU, which seem to be mainly restricted to microorganisms from the Clostridia class. Blacks dots stand for bootstrap values >80. Right: Horizontal blue bars illustrate the predicted polypeptide lengths of the sequences analyzed. AA: number of amino acids. (PNG 640 kb)
10482_2013_9966_MOESM3_ESM.pdf (10 kb)
SufB alignment of Proteobacteria (Escherichia coli and Klebsiella pneumoniae) and Firmicutes (Enterococcus faecalis and Streptococcus mutans) sequences. Conserved cysteine residues are highlighted in yellow. (PDF 10 kb)
10482_2013_9966_MOESM4_ESM.pdf (10 kb)
SufC alignment of Proteobacteria (Escherichia coli and Salmonella enterica) and Firmicutes (Enterococcus faecalis and Staphylococcus aureus) sequences. The conserved glutamic acid residue of the active site is highlighted in green. (PDF 9 kb)


  1. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of 2Fe–2S and 4Fe–4S clusters in IscU. Biochemistry 39:7856–7862PubMedCrossRefGoogle Scholar
  2. Albrecht AG, Netz DJA, Miethke M, Pierik AJ, Burghaus O, Peuckert F, Lill R, Marahiel MA (2010) SufU Is an essential iron–sulfur cluster scaffold protein in Bacillus subtilis. J Bacteriol 192:1643–1651PubMedCrossRefGoogle Scholar
  3. Albrecht AG, Peuckert F, Landmann H, Miethke M, Seubert A, Marahiel MA (2011) Mechanistic characterization of sulfur transfer from cysteine desulfurase SufS to the iron–sulfur scaffold SufU in Bacillus subtilis. FEBS Lett 585(3):465–470PubMedCrossRefGoogle Scholar
  4. Aloria K, Schilke B, Andrew A, Craig EA (2004) Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep 5:1096–1101PubMedCrossRefGoogle Scholar
  5. Aranda J, Garrido ME, Fittipaldi N, Cortes F, Llagostera M, Gottschalk M, Barbe J (2010) The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Vet Microbiol 144:246–249PubMedCrossRefGoogle Scholar
  6. Arias CA, Contreras GA, Murray BE (2010) Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 16:555–562PubMedCrossRefGoogle Scholar
  7. Ayala-Castro C, Saini A, Outten FW (2008) Fe–S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72:110PubMedCrossRefGoogle Scholar
  8. Beinert H, Kiley PJ (1999) Fe–S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3:152–157PubMedCrossRefGoogle Scholar
  9. Beinert H, Holm RH, Munck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659PubMedCrossRefGoogle Scholar
  10. Booth MPS, Challand MR, Emery DC, Roach PL, Spencer J (2010) High-level expression and reconstitution of active Cfr, a radical-SAM rRNA methyltransferase that confers resistance to ribosome-acting antibiotics. Protein Expr Purif 74:204–210PubMedCrossRefGoogle Scholar
  11. Brickman TJ, Anderson MT, Armstrong SK (2007) Bordetella iron transport and virulence. Biometals 20:303–322PubMedCrossRefGoogle Scholar
  12. Calzolai L, Zhou ZH, Adams MWW, LaMar GN (1996) Role of cluster-ligated aspartate in gating electron transfer in the four-iron ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus. J Am Chem Soc 118:2513–2514CrossRefGoogle Scholar
  13. Cha JY, Lee JS, Oh JI, Choi JW, Baik HS (2008) Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: fur controls expression of genes involved in quorum-sensing. Biochem Biophys Res Commun 366:281–287PubMedCrossRefGoogle Scholar
  14. Chandor-Proust A, Berteau O, Douki T, Ollagnier-de-Choudens S, Fontecave M, Atta M (2008) DNA repair and free radicals, new insights into the mechanism of spore photoproduct lyase revealed by single amino acid substitution. J Biol Chem 283:36361–36368PubMedCrossRefGoogle Scholar
  15. Chandramouli K, Unciuleac MC, Naik S, Dean DR, Huynh BH, Johnson MK (2007) Formation and properties of 4Fe–4S clusters on the IscU scaffold protein. Biochemistry 46:6804–6811PubMedCrossRefGoogle Scholar
  16. Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL (2010) RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 192:3144–3158PubMedCrossRefGoogle Scholar
  17. Ciccarelli FD, Doerks T, von C Mering, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedCrossRefGoogle Scholar
  18. Crack JC, Green J, Thomson AJ, Le Brun NE (2012) Iron–sulfur cluster sensor-regulators. Curr Opin Chem Biol 16:35–44PubMedCrossRefGoogle Scholar
  19. Cupp-Vickery JR, Peterson JC, Ta DT, Vickery LE (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J Mol Biol 342:1265–1278PubMedCrossRefGoogle Scholar
  20. Dai Y, Outten FW (2012) The Escherichia coli SufS–SufE sulfur transfer system is more resistant to oxidative stress than IscS–IscU. FEBS Lett 586:4016–4022PubMedCrossRefGoogle Scholar
  21. Dai SD, Schwendtmayer C, Schurmann P, Ramaswamy S, Eklund H (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron–sulfur cluster. Science 287:655–658PubMedCrossRefGoogle Scholar
  22. Demple B, Ding HE, Jorgensen M (2002) Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. Methods Enzymol 348:355–364PubMedCrossRefGoogle Scholar
  23. Desnoyers G, Morissette A, Prevost K, Masse E (2009) Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J 28:1551–1561PubMedCrossRefGoogle Scholar
  24. Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA (2012) Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 56:3917–3922PubMedCrossRefGoogle Scholar
  25. Dos Santos PC, Smith AD, Frazzon J, Cash VL, Johnson MK, Dean DR (2004) Iron–sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein. J Biol Chem 279:19705–19711PubMedCrossRefGoogle Scholar
  26. Eccleston JF, Petrovic A, Davis CT, Rangachari K, Wilson RJM (2006) The kinetic mechanism of the SufC ATPase: the cleavage step is accelerated by SufB. J Biol Chem 281:8371–8378PubMedCrossRefGoogle Scholar
  27. Ellermeier JR, Slauch JM (2008) Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 190:476–486PubMedCrossRefGoogle Scholar
  28. Flint DH, Allen RM (1996) Iron–sulfur proteins with nonredox functions. Chem Rev 96:2315–2334PubMedCrossRefGoogle Scholar
  29. Fontecave M, de Choudens SA, Py B, Barras F (2006) Mechanisms of iron–sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 11:128CrossRefGoogle Scholar
  30. Fu WG, Jack RF, Morgan TV, Dean DR, Johnson MK (1994) NifU gene product from Azotobacter vinelandii is a homodimer that contains 2 identical 2Fe–2S clusters. Biochemistry 33:13455–13463PubMedCrossRefGoogle Scholar
  31. Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N, Hata Y (2000) Structure of a NifS homologue: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase. Biochemistry 39:1263–1273PubMedCrossRefGoogle Scholar
  32. Giel JL, Rodionov D, Liu MZ, Blattner FR, Kiley PJ (2006) IscR-dependent gene expression links iron–sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60:1058–1075PubMedCrossRefGoogle Scholar
  33. Goldsmith-Fischman S, Kuzin A, Edstrom WC, Benach J, Shastry R, Xiao R, Acton TB, Honig B, Montelione GT, Hunt JF (2004) The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. J Mol Biol 344(2):549–565PubMedCrossRefGoogle Scholar
  34. Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772PubMedCrossRefGoogle Scholar
  35. Hansen LH, Planellas MH, Long KS, Vester B (2012) The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob Agents Chemother 56:3563–3567PubMedCrossRefGoogle Scholar
  36. Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177PubMedCrossRefGoogle Scholar
  37. Harvie DR, Vilchez S, Steggles JR, Ellar DJ (2005) Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology-Sgm 151:569–577CrossRefGoogle Scholar
  38. Hedderich R, Albracht SPJ, Linder D, Koch J, Thauer RK (1992) Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum. The MVHB gene product of the methylviologen reducing hydrogenase operon. FEBS Lett 298:65–68PubMedCrossRefGoogle Scholar
  39. Hennequin C, Forestier C (2009) oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 77:5449–5457PubMedCrossRefGoogle Scholar
  40. Hillmann F, Döring C (2009) The role of PerR in O2-affected gene expression of Clostridium acetobutylicum. J Bacteriol 191:6082–6093PubMedCrossRefGoogle Scholar
  41. Hillmann F, Fischer RJ, Bahl H (2006) The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein. Arch Microbiol 185:270–276PubMedCrossRefGoogle Scholar
  42. Huet G, Daffé M, Saves I (2005) Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe–S] cluster assembly: evidence for its implication in the pathogen’s survival. J Bacteriol 187:6137–6146PubMedCrossRefGoogle Scholar
  43. Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, McRee DE, Hirst J, Stout CD, Fee JA (2003) High-resolution structure of the soluble, respiratory-type Rieske protein from Thermus thermophilus: analysis and comparison. Biochemistry 42:7303–7317PubMedCrossRefGoogle Scholar
  44. Hwang DM, Dempsey A, Tan KT, Liew CC (1996) A modular domain of NifU, a nitrogen fixation cluster protein, is highly conserved in evolution. J Mol Evol 43:536–540PubMedCrossRefGoogle Scholar
  45. Jacobson MR, Brigle KE, Bennett LT, Setterquist RA, Wilson MS, Cash VL, Beynon J, Newton WE, Dean DR (1989a) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027PubMedGoogle Scholar
  46. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989b) Biochemical and genetic analysis of the NifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57PubMedCrossRefGoogle Scholar
  47. Jang S, Imlay JA (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron–sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78:1448–1467PubMedCrossRefGoogle Scholar
  48. Jarret JT (2003) The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Curr Opin Chem Biol 7:174–182CrossRefGoogle Scholar
  49. Jittawuttipoka T, Sallabhan R, Vattanaviboon P, Fuangthong M, Mongkolsuk S (2010) Mutations of ferric uptake regulator (fur) impair iron homeostasis, growth, oxidative stress survival, and virulence of Xanthomonas campestris pv. campestris. Arch Microbiol 192:331–339PubMedCrossRefGoogle Scholar
  50. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281PubMedCrossRefGoogle Scholar
  51. Johnson JR, Clabots C, Rosen H (2006) Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1: K1: H7 in a mouse model of ascending urinary tract infection. Infect Immun 74:461–468PubMedCrossRefGoogle Scholar
  52. Johnson M, Sengupta M, Purves J, Tarrant E, Williams PH, Cockayne A, Muthaiyan A, Stephenson R, Ledala N, Wilkinson BJ, Jayaswal RK, Morrissey JA (2011) Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int J Med Microbiol 301:44–52PubMedCrossRefGoogle Scholar
  53. Kato S, Mihara H, Kurihara T, Takahashi Y, Tokumoto U, Yoshimura T, Esaki N (2002) Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron–sulfur cluster assembly. Proc Natl Acad Sci USA 99:5948–5952PubMedCrossRefGoogle Scholar
  54. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B (2005) A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073PubMedCrossRefGoogle Scholar
  55. Kiley PJ, Beinert H (2003) The role of Fe–S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6:181–185PubMedCrossRefGoogle Scholar
  56. Kim SH, Lee BY, Lau GW, Cho YH (2009) IscR modulates catalase A (KatA) activity, peroxide resistance, and full virulence of Pseudomonas aeruginosa PA14. J Microbiol Biotechnol 19:1520–1526PubMedGoogle Scholar
  57. Kim JH, Tonelli M, Kim T, Markley JL (2012) Three-dimensional structure and determinants of stability of the iron–sulfur cluster scaffold protein IscU from Escherichia coli. Biochemistry 51(28):5557–5563PubMedCrossRefGoogle Scholar
  58. Kitphati W, Ngok-Ngam P, Suwanmaneerat S, Sukchawalit R, Mongkolsuk S (2007) Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol 73:4760–4768PubMedCrossRefGoogle Scholar
  59. LaMarre J, Mendes RE, Szal T, Schwarz S, Jones RN, Mankina AS (2013) The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrob Agents Chemother 57:1173–1179PubMedCrossRefGoogle Scholar
  60. Landry AP, Cheng Z, Ding H (2013) Iron binding activity is essential for the function os IscA in iron–sulphur cluster biogenesis. Dalton Trans 42:3100–3106PubMedCrossRefGoogle Scholar
  61. Lau GW, Britigan BE, Hassett DJ (2005) Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect Immun 73:2550–2553PubMedCrossRefGoogle Scholar
  62. Layer G, Gaddam SA, Ayala-Castro CN, Choudens SO, Lascoux D, Fontecave M, Outten FW (2007) SufE transfers sulfur from SufS to SufB for iron–sulfur cluster assembly. J Biol Chem 282:13342–13350PubMedCrossRefGoogle Scholar
  63. Lee KC, Yeo WS, Roe JH (2008) Oxidant-Responsive Induction of the suf operon, encoding a Fe–S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol 190:8244–8247PubMedCrossRefGoogle Scholar
  64. Lill R, Hoffmann B, Molik S, Pierik AJ et al (2012) The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508PubMedCrossRefGoogle Scholar
  65. Lima CD (2002) Analysis of the Escherichia coli NifS CsdB protein at 2.0 angstrom reveals the structural basis for perselenide and persulfide intermediate formation. J Mol Biol 315:1199–1208PubMedCrossRefGoogle Scholar
  66. Link TA (1999) The structures of Rieske and Rieske-type proteins. Adv Inorg Chem 47(47):83–157CrossRefGoogle Scholar
  67. Liu GH, Li ZH, Chiang YW, Acton T, Montelione GT, Murray D, Szyperski T (2005) High-quality homology models derived from NMR and X-ray structures of Escherichia coli proteins YgdK and Suf E suggest that all members of the YgdK/Suf E protein family are enhancers of cysteine desulfurases. Protein Sci 14:1597–1608PubMedCrossRefGoogle Scholar
  68. Liu Y, Wang Y, Wu C, Shen Z, Schwarz S, Du XD, Dai L, Zhang W, Zhang Q, Shena J (2012) First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob Agents Chemother 56:1650–1654PubMedCrossRefGoogle Scholar
  69. Lo M, Murray GL, Khoo CA, Haake DA, Zuerner RL, Adler B (2010) Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78:4850–4859PubMedCrossRefGoogle Scholar
  70. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) Biogenesis of Fe–S cluster by the bacterial SUF system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359PubMedCrossRefGoogle Scholar
  71. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505PubMedCrossRefGoogle Scholar
  72. Malkin R, Rabinowi JC (1966) Reconstitution of clostridial ferredoxin. Biochem Biophys Res Commun 23:822PubMedCrossRefGoogle Scholar
  73. Mansy SS, Wu SP, Cowan JA (2004) Iron–sulfur cluster biosynthesis: biochemical characterization of the conformational dynamics of Thermotoga maritima IscU and the relevance for cellular cluster assembly. J Biol Chem 279:10469–10475PubMedCrossRefGoogle Scholar
  74. Mihara H, Kato S, Lacourciere GM, Stadtman TC, Kennedy R, Kurihara T, Tokumoto U, Takahashi Y, Esaki N (2002) The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci USA 99:6679–6683PubMedCrossRefGoogle Scholar
  75. Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194PubMedCrossRefGoogle Scholar
  76. Mulholland SE, Gibney BR, Rabanal F, Dutton PL (1998) Characterization of the fundamental protein ligand requirements of 4Fe–4S (2+/+) clusters with sixteen amino acid maquettes. J Am Chem Soc 120:10296–10302CrossRefGoogle Scholar
  77. Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972PubMedCrossRefGoogle Scholar
  78. Nachin L, Loiseau L, Expert D, Barras F (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for Fe–S biogenesis under oxidative stress. EMBO J 22:427–437PubMedCrossRefGoogle Scholar
  79. Newton SMC, Klebba PE, Raynaud C, Shao Y, Jiang XX, Dubail I, Archer C, Frehel C, Charbit A (2005) The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence. Mol Microbiol 55:927–940PubMedCrossRefGoogle Scholar
  80. Ollagnier-de-Choudens S, Mattioli T, Tagahashi Y, Fontecave M (2001) Iron–sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607PubMedCrossRefGoogle Scholar
  81. Ollagnier-de-Choudens S, Sanakis Y, Fontecave M (2004) SufA/IscA: reactivity studies of a class of scaffold proteins involved in Fe–S cluster assembly. J Biol Inorg Chem 9:828–838PubMedCrossRefGoogle Scholar
  82. Outten FW, Wood MJ, Munoz FM, Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe–S cluster assembly in Escherichia coli. J Biol Chem 278:45713–45719PubMedCrossRefGoogle Scholar
  83. Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872PubMedCrossRefGoogle Scholar
  84. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256:9–17PubMedCrossRefGoogle Scholar
  85. Peters JW, Stowell MHB, Soltis SM, Finnegan MG, Johnson MK, Rees DC (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–1187PubMedCrossRefGoogle Scholar
  86. Porello SL, Cannon MJ, David SS (1998) A substrate recognition role for the 4Fe–4S (2+) cluster of the DNA repair glycosylase MutY. Biochemistry 37:6465–6475PubMedCrossRefGoogle Scholar
  87. Py B, Barras F (2010) Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol 8:436–446PubMedCrossRefGoogle Scholar
  88. Raulfs EC, O’Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR (2008) In vivo iron–sulfur cluster formation. Proc Natl Acad Sci USA 105:8591–8596PubMedCrossRefGoogle Scholar
  89. Rebeil R, Sun Y, Chooback L, Pedraza-Reyes M, Kinsland C, Begley TP, Nicholson WL (1998) Spore photoproduct lyase from Bacillus subtilis spores is a novel iron–sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J Bacteriol 180:4879–4885PubMedGoogle Scholar
  90. Riboldi GP, Verli H, Frazzon J (2009) Structural studies of the Enterococcus faecalis SufU Fe–S cluster protein. BMC Biochem 10:3PubMedCrossRefGoogle Scholar
  91. Riboldi GP, Oliveira JS, Frazzon J (2011a) Enterococcus faecalis SufU scaffold protein enhances SufS desulfurase activity by acquiring sulfur from its conserved cysteine 153. BBA 1814:1910–1918PubMedCrossRefGoogle Scholar
  92. Riboldi GP, Larson TJ, Frazzon J (2011b) Enterococcus faecalis sufCDSUB complements Escherichia coli sufABCDSE. FEMS Microbiol Lett 320:15–24PubMedCrossRefGoogle Scholar
  93. Rincon-Enriquez G, Crete P, Barras F, Py B (2008) Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemii to adapt to hostile conditions. Mol Microbiol 67:1257–1273PubMedCrossRefGoogle Scholar
  94. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Iron/sulfur prteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827(3):455–469PubMedCrossRefGoogle Scholar
  95. Runyen-Janecky L, Daugherty A, Lloyd B, Wellington C, Eskandarian H, Sagransky M (2008) Role and regulation of iron–sulfur cluster biosynthesis genes in Shigella flexneri virulence. Infect Immun 76:1083–1092PubMedCrossRefGoogle Scholar
  96. Saini A, Mapolelo DT, Chahal HK, Johnson MK, Outten FW (2010) SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe–S cluster formation on SufB. Biochemistry 49:9402–9412PubMedCrossRefGoogle Scholar
  97. Sava IG, Heikens E, Huebner J (2010) Pathogenesis and immunity in enterococcal infections. Clin Microbiol Infect 16:533–540PubMedCrossRefGoogle Scholar
  98. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ (2001) IscR, an Fe–S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci USA 98:14895–14900PubMedCrossRefGoogle Scholar
  99. Selbach B, Earles E, Dos Santos PC (2010) Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis. Biochemistry 49:8794–8802PubMedCrossRefGoogle Scholar
  100. Sellers VM, Johnson MK, Dailey HA (1996) Function of the 2Fe–2S cluster in mammalian ferrochelatase: a possible role as a nitric oxide sensor. Biochemistry 35:2699–2704PubMedCrossRefGoogle Scholar
  101. Sendra M, de Choudens SO, Lascoux D, Sanakis Y, Fontecave M (2007) The SUF iron–sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA. FEBS Lett 581:1362–1368PubMedCrossRefGoogle Scholar
  102. Shi R, Proteau A, Villarroya M, Moukadiri I et al (2010) Structural basis for Fe\S cluster assembly and tRNA thiolation mediated by IscS protein–protein interactions. PLoS Biol 8:e1000354PubMedCrossRefGoogle Scholar
  103. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJA, Pierik AJ, Wohlschlegel JA, Lill R (2012) MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity. Science 337:195–199PubMedCrossRefGoogle Scholar
  104. Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, Telser J, Peterson SN, Bae T, He C (2012) AirSR, a [2Fe–2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Am Chem Soc 134:305–314PubMedCrossRefGoogle Scholar
  105. Sund CJ, Rocha ER, Tzinabos AO, Wells WG, Gee JM, Reott MA, O’Rourke DP, Smith CJ (2008) The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol 67:129–142PubMedCrossRefGoogle Scholar
  106. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383PubMedCrossRefGoogle Scholar
  107. Tapley TL, Cupp-Vickery JR, Vickery LE (2006) Structural determinants of HscA peptide-binding specificity. Biochemistry 45:8058–8066PubMedCrossRefGoogle Scholar
  108. Tokumoto U, Takahashi Y (2001) Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron–sulfur protein. J Biochem 130:63–71PubMedCrossRefGoogle Scholar
  109. Tokumoto U, Nomura S, Minami Y, Mihara H, Kato S, Kurihara T, Esaki N, Kanazawa H, Matsubara H, Takahashi Y (2002) Network of protein–protein interactions among iron–sulfur cluster assembly proteins in Escherichia coli. J Biochem 131:713–719PubMedCrossRefGoogle Scholar
  110. Toledo MAS, Schneider DR, Azzoni AR, Favaro MTP, Pelloso AC, Santos CA, Saraiva AM, Souza AP (2011) Characterization of an oxidative stress response regulator, homologous to Escherichia coli OxyR, from the phytopathogen Xylella fastidiosa. Protein Expr Purif 75:204–210PubMedCrossRefGoogle Scholar
  111. Vinella D, Brochier-Armanet C, Loiseau L, Talla E, Barras F (2009) Iron–sulfur (Fe–S0 protein biogenesis: phylogenomic and genetic studies of A-typer carries. PLoS Genet 5:1–16CrossRefGoogle Scholar
  112. Wachtershauser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602PubMedCrossRefGoogle Scholar
  113. Wachtershauser G, Huber C (2007) Debating evidence for the origin of life on Earth. Science 315:938–939Google Scholar
  114. Wada K, Sumi N, Nagai R, Iwasaki K, Sato T, Suzuki K, Hasegawa Y, Kitaoka S, Minami Y, Outten FW, Takahashi Y, Fukuyama K (2009) Molecular dynamism of Fe–S cluster biosynthesis implicated by the structure of the SufC(2)-SufD(2) complex. J Mol Biol 387(1):245–258PubMedCrossRefGoogle Scholar
  115. Wollers S, Layer G, Garcia-Serres R, Signor L, Clemancey M, Latour JM, Fontecave M, de Choudens SO (2010) Iron–sulfur (Fe–S) Cluster Assembly: the SufBCD complex is a new type of Fe–S scaffold with a flavin redox cofactor. J Biol Chem 285:23329–23339CrossRefGoogle Scholar
  116. Wu Y, Brosh RM (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron–sulfur cluster. Nucleic Acids Res 40:4247–4260PubMedCrossRefGoogle Scholar
  117. Wu J, Lin XH, Xie H (2008) OxyR is involved in coordinate regulation of expression of fimA and sod genes in Porphyromonas gingivalis. FEMS Microbiol Lett 282:188–195PubMedCrossRefGoogle Scholar
  118. Yeo WS, Lee JH, Lee KC, Roe JH (2006) IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe–S assembly proteins. Mol Microbiol 61:206–218PubMedCrossRefGoogle Scholar
  119. Yoon T, Cowan JA (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme byosynthesis. J Biol Chem 279:25943–25946PubMedCrossRefGoogle Scholar
  120. Zheng LM, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NifS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758PubMedCrossRefGoogle Scholar
  121. Zheng LM, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters: identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272PubMedCrossRefGoogle Scholar
  122. Zhou DS, Qin L, Han YP, Qiu JF, Chen ZL, Li B, Song YJ, Wang J, Guo ZB, Zhai JH, Du ZM, Wang XY, Yang RF (2006) Global analysis of iron assimilation and fur regulation in Yersinia pestis. FEMS Microbiol Lett 258:9–17PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gustavo Pelicioli Riboldi
    • 1
  • Eduardo Preusser de Mattos
    • 3
  • Jeverson Frazzon
    • 2
  1. 1.Laboratory of Molecular Microbiology, Department of MicrobiologyFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
  2. 2.Laboratory of Biochemistry of MicroorganismsFood Science Institute, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Medical Genetics Service, Department of GeneticsHospital de Clínicas de Porto Alegre, UFRGSPorto AlegreBrazil

Personalised recommendations