Advertisement

Antonie van Leeuwenhoek

, Volume 104, Issue 3, pp 369–376 | Cite as

Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophilus Wei et al. 2012 as Vulcaniibacterium thermophilum comb. nov.

  • Tian-Tian Yu
  • En-Min Zhou
  • Yi-Rui Yin
  • Ji-Cheng Yao
  • Hong Ming
  • Lei Dong
  • Shuai Li
  • Guo-Xing Nie
  • Wen-Jun Li
Original Paper

Abstract

A thermotolerant Gram-staining negative and aerobic bacterium, designated strain YIM 77520T, was isolated from a geothermally heated soil sample collected at Rehai National Park, Tengchong, Yunnan Province, South-West China. Cells of the strain were found to be rod-shaped and colonies were light beige and circular. The strain was found to grow in the presence of 0–2 % (w/v) total salts (optimum, 0 %), at pH 6.0–8.0 (optimum, pH 7.0) and 25–55 °C (optimum, 45 °C). The only quinone detected was Q-8 and the genomic DNA G+C content was determined to be 66.9 mol%. The major fatty acids (>10 %) were identified as iso-C16:0 and iso-C15:0. The phospholipids were found to consist of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unknown phospholipids and three aminophospholipids. Based on the 16S rRNA gene sequence analysis, strain YIM 77520T was found to form a cluster with Lysobacter thermophilus YIM 77875T and showed the highest 16S rRNA gene sequence similarity to L. thermophilus YIM 77875T (96.0 %). These two strains formed a distinct lineage of the family ‘Xanthomonadaceae’. On the basis of the morphological and chemotaxonomic characteristics, as well as genotypic data, a new genus, Vulcaniibacterium gen. nov. is proposed with Vulcaniibacterium tengchongense sp. nov. as the type species. The type strain of V. tengchongense sp. nov. is strain YIM 77520T (=DSM 25623T = CCTCC AB 2011152T). Furthermore we propose that L. thermophilus Wei et al. 2012 is reclassified in the new genus as Vulcaniibacterium thermophilum comb. nov. (type strain YIM 77875T = CCTCC AB 2012064T = KCTC 32020T) based on polyphasic data.

Keywords

Vulcaniibacterium gen. nov. Vulcaniibacterium tengchongense sp. nov. Vulcaniibacteriumthermophilum comb. nov. Rehai National Park 

Notes

Acknowledgments

The authors are grateful to Prof. Jean Euzéby (SBSV and ENVT, France) for the Latin construction of the species name. This research was supported by the Key Project of International Cooperation of Ministry of Science & Technology (MOST) (No. 2013DFA31980), Natural Science Foundation of China (No. 31070007), Research Project of Education Department of Henan Province of China (2011A180025), Henan Provincial Undergraduate Training Programs for Innovation and Entrepreneurship (2011060), and National Science Foundation grant (OISE-0968421). W-J Li was also supported by ‘Hundred Talents Program’ of the Chinese Academy of Sciences.

Supplementary material

10482_2013_9959_MOESM1_ESM.docx (495 kb)
Supplementary material 1 (DOCX 494 kb)

References

  1. Bae HS, Im WT, Lee ST (2005) Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 55:1155–1161PubMedCrossRefGoogle Scholar
  2. Busse H-J, Kämpfer P, Moore ERB (2002) Thermomonas haemolytica gen. nov., sp. nov., a γ-proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52:473–483PubMedGoogle Scholar
  3. Cerny G (1978) Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. Appl Microbiol Biotechnol 5:113–122CrossRefGoogle Scholar
  4. Chen MY, Tsay SS, Chen KY, Shi YC, Lin YT, Lin GH (2002) Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52:2155–2161PubMedCrossRefGoogle Scholar
  5. Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393CrossRefGoogle Scholar
  6. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diaminobutyric acid. Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  7. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230PubMedCrossRefGoogle Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Finkmann W, Altendorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282PubMedCrossRefGoogle Scholar
  11. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  14. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2387CrossRefGoogle Scholar
  15. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428PubMedCrossRefGoogle Scholar
  16. Liu M, Liu Y, Wang Y, Luo X, Dai J, Fang C (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437PubMedCrossRefGoogle Scholar
  17. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  18. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  19. Palleroni NJ (1984) Genus I. Pseudomonas Migula 1894, 237AL. In: Krieg NR, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 141–199Google Scholar
  20. Palleroni NJ, Bradbury JF (1993) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43:606–609PubMedCrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Sullivan RF, Holtman MA, Zylstra GJ, White JF Jr, Kobayashi DY (2003) Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. J Appl Microbiol 94:1079–1086PubMedCrossRefGoogle Scholar
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, ang Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  24. Tóth E, Kovács G, Schumann P, Kovács AL, Steiner U, Halbritterá A, Márialigeti K (2001) Schineria larvae gen. nov., sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: sarcophagidae). Int J Syst Evol Microbiol 51:401–407PubMedGoogle Scholar
  25. Vauterin L, Hoste B, Kersters K, Swings J (1995) Reclassification of Xanthomonas. Int J Syst Bacteriol 45:472–489CrossRefGoogle Scholar
  26. Vauterin L, Yang P, Swings J (1996) Utilization of fatty acid methyl esters for the differentiation of new Xanthomonas species. Int J Syst Bacteriol 46:298–304CrossRefGoogle Scholar
  27. Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ, Yin YR, Ming H, Tang SK, Li WJ (2012) Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie Van Leeuwenhoek. doi: 10.1007/s10482-012-9761-8 Google Scholar
  28. Wells JM, Raju BC, Hung HY, Weisburg WG, MandelcoPaul L, Brenner J (1987) Xylella fastidiosa gen. nov., sp. nov. Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37:136–143CrossRefGoogle Scholar
  29. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55:1149–1153PubMedCrossRefGoogle Scholar
  30. Ziegler S, Waidner B, Itoh T, Schumann P, Spring S, Gescher J (2013) Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol 63:1499–1504PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tian-Tian Yu
    • 1
    • 2
  • En-Min Zhou
    • 1
  • Yi-Rui Yin
    • 1
  • Ji-Cheng Yao
    • 1
  • Hong Ming
    • 1
    • 3
  • Lei Dong
    • 1
  • Shuai Li
    • 4
  • Guo-Xing Nie
    • 4
  • Wen-Jun Li
    • 1
    • 2
  1. 1.Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, and Laboratory for Conservation and Utilization of Bio-resourcesYunnan Institute of Microbiology, Yunnan UniversityKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesÜrűmqiPeople’s Republic of China
  3. 3.Department of Life Sciences and TechnologyXinxiang Medical UniversityXinxiangPeople’s Republic of China
  4. 4.College of FisheriesHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations