Advertisement

Antonie van Leeuwenhoek

, Volume 104, Issue 3, pp 349–368 | Cite as

Molecular signatures for the phylum Aquificae and its different clades: proposal for division of the phylum Aquificae into the emended order Aquificales, containing the families Aquificaceae and Hydrogenothermaceae, and a new order Desulfurobacteriales ord. nov., containing the family Desulfurobacteriaceae

  • Radhey S. Gupta
  • Ricky Lali
Original Paper

Abstract

We report here detailed phylogenetic and comparative analyses on 11 sequenced genomes from the phylum Aquificae to identify molecular markers that are specific for the species from this phylum or its different families (viz. Aquificaceae, Hydrogenothermaceae and Desulfurobacteriaceae). In phylogenetic trees based on 16S rRNA gene or concatenated sequences for 32 conserved proteins, species from the three Aquificae families formed distinct clades. These trees also supported a strong relationship between the Aquificaceae and Hydrogenothermaceae families. In parallel, comparative analyses on protein sequences from Aquificae genomes have identified 46 conserved signature indels (CSIs) in broadly distributed proteins that are either exclusively or mainly found in members of the phylum Aquificae or its different families and subclades. Four of these CSIs, which are found in all sequenced Aquificae species, provide potential molecular markers for this phylum. Twelve, six and thirteen other CSIs that respectively are specific for the sequenced Aquificaceae, Hydrogenothermaceae and Desulfurobacteriaceae species provide molecular markers and novel tools for the identification of members of these families and for genetic and biochemical studies on them. Lastly, these studies have identified 11 CSIs in divergent proteins that are uniquely shared by members of the Aquificaceae and Hydrogenothermaceae families providing strong evidence that these two groups of bacteria shared a common ancestor exclusive of all other Aquificae (bacteria). The species from these two families are also very similar in their metabolic and physiological properties and they consist of aerobic or microaerophilic bacteria, which generally obtain energy by oxidation of hydrogen or reduced sulfur compounds by molecular oxygen. Based upon their strong association in phylogenetic trees, unique shared presence of large numbers of CSIs in different proteins, and similarities in their metabolic and physiological properties, it is proposed that the order Aquificales should be emended to include only the members of the families Aquificaceae and Hydrogenothermaceae. The members of the family Desulfurobacteriaceae, which are obligate anaerobes that strictly use hydrogen as electron donor, are now transferred to a new order Desulfurobacteriales ord. nov. The emended descriptions of the phylum Aquificae and its three families incorporating information for different molecular signatures are also provided.

Keywords

Aquificae taxonomy Molecular signatures Hyperthermophiles Aquificales Order Desulfurobacteriales Conserved signature indels 

Notes

Acknowledgments

This work was supported by a Research grant from the Natural Science and Engineering Research Council of Canada.

Supplementary material

10482_2013_9957_MOESM1_ESM.pdf (893 kb)
Supplementary material 1 (PDF 892 kb)

References

  1. Anderson I, Saunders E, Lapidus A, Nolan M, Lucas S, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Chang YJ, Brambilla EM, Rohde M, Spring S, Goker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2012) Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)). Stand Genomic Sci 6:155–164PubMedCrossRefGoogle Scholar
  2. Arai H, Kanbe H, Ishii M, Igarashi Y (2010) Complete genome sequence of the thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus TK-6. J Bacteriol 192:2651–2652PubMedCrossRefGoogle Scholar
  3. Bhandari V, Gupta RS (2012) Molecular signatures for the phylum Synergistetes and some of its subclades. Antonie van Leeuwenhoek 102(4):517–540PubMedCrossRefGoogle Scholar
  4. Bhandari V, Naushad HS, Gupta RS (2012) Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2:98PubMedCrossRefGoogle Scholar
  5. Bhandari V, Ahmod NZ, Shah HN, Gupta RS (2013) Molecular signatures for the Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.048488-0
  6. Bonch-Osmolovskaya E (2008) Aquificales. Encylopedia of Life Sciences. Wieley, pp 1–7Google Scholar
  7. Boussau B, Gueguen L, Gouy M (2008) Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of Aquificales in the phylogeny of Bacteria. BMC Evol Biol 8:272PubMedCrossRefGoogle Scholar
  8. Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:353–356CrossRefGoogle Scholar
  9. Caldwell SL, Liu Y, Ferrera I, Beveridge T, Reysenbach AL (2010) Thermocrinis minervae sp. nov., a hydrogen- and sulfur-oxidizing, thermophilic member of the Aquificales from a Costa Rican terrestrial hot spring. Int J Syst Evol Microbiol 60:338–343PubMedCrossRefGoogle Scholar
  10. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  11. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedCrossRefGoogle Scholar
  12. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  13. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358PubMedCrossRefGoogle Scholar
  14. Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318PubMedCrossRefGoogle Scholar
  15. Eder W, Huber R (2003) Hydrogenothermaceae fam. nov. in validation list no. 89. Int J Syst Evol Microbiol 53:1–2CrossRefGoogle Scholar
  16. Elkins JG, Hamilton-Brehm SD, Lucas S, Han J, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Davenport KW, Detter JC, Han CS, Tapia R, Land ML, Hauser L, Kyrpides NC, Ivanova NN, Pagani I, Bruce D, Woyke T, Cottingham RW (2013) Complete genome sequence of the hyperthermophilic sulfate-reducing bacterium Thermodesulfobacterium geofontis OPF15T. Genome Announc 1:e0016213PubMedGoogle Scholar
  17. Euzeby JP (2013) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr/classifphyla.html. Accessed 15 March 2013
  18. Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412PubMedCrossRefGoogle Scholar
  19. Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Antonie van Leeuwenhoek 101:45–54PubMedCrossRefGoogle Scholar
  20. Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112PubMedCrossRefGoogle Scholar
  21. Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59:234–247PubMedCrossRefGoogle Scholar
  22. Goker M, Daligault H, Mwirichia R, Lapidus A, Lucas S, Deshpande S, Pagani I, Tapia R, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Han C, Land M, Hauser L, Pan C, Brambilla EM, Rohde M, Spring S, Sikorski J, Wirth R, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2011) Complete genome sequence of the thermophilic sulfur-reducer Desulfurobacterium thermolithotrophum type strain (BSA(T)) from a deep-sea hydrothermal vent. Stand Genomic Sci 5:407–415PubMedCrossRefGoogle Scholar
  23. Griffiths E, Gupta RS (2004) Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Int Microbiol 7:41–52PubMedGoogle Scholar
  24. Griffiths E, Gupta RS (2006) Molecular signatures in protein sequences that are characteristics of the phylum Aquificae. Int J Syst Evol Microbiol 56:99–107PubMedCrossRefGoogle Scholar
  25. Guiral M, Prunetti L, Aussignargues C, Ciaccafava A, Infossi P, Ilbert M, Lojou E, Giudici-Orticoni MT (2012) The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications. Adv Microb Physiol 61:125–194PubMedCrossRefGoogle Scholar
  26. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMedGoogle Scholar
  27. Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202PubMedCrossRefGoogle Scholar
  28. Gupta RS (2010) Applications of conserved indels for understanding microbial phylogeny. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 135–150Google Scholar
  29. Gupta RS (2013) Phylum Aquificae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrand E (eds) The prokaryotes, 4th edn. Springer, Berlin (in press)Google Scholar
  30. Gupta RS, Chander P, George S (2013a) Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie van Leeuwenhoek 103:99–119PubMedCrossRefGoogle Scholar
  31. Gupta RS, Chen WJ, Adeolu M, and Chai Y (2013b) Molecular signatures for the class Coriobacteriia and its different clades; Proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.048371-0
  32. Huber R, Eder W (2006) Aquificales. Prokaryotes 7:925–938CrossRefGoogle Scholar
  33. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Konig H, Reinhard R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., Represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351CrossRefGoogle Scholar
  34. Hugler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92PubMedCrossRefGoogle Scholar
  35. Jahnke LL, Eder W, Huber R, Hope JM, Hinrichs KU, Hayes JM, Des Marais DJ, Cady SL, Summons RE (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189PubMedCrossRefGoogle Scholar
  36. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405PubMedCrossRefGoogle Scholar
  37. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  38. Klenk HP, Meier TD, Durovic P, Schwass V, Lottspeich F, Dennis PP, Zillig W (1999) RNA polymerase of Aquifex pyrophilus: implications for the evolution of the bacterial rpoBC operon and extremely thermophilic bacteria. J Mol Evol 48:528–541PubMedCrossRefGoogle Scholar
  39. Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA (2007) Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Mosc) 72:1299–1312CrossRefGoogle Scholar
  40. L’Haridon S, Reysenbach AL, Tindall BJ, Schonheit P, Banta A, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C (2006) Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:2843–2852PubMedCrossRefGoogle Scholar
  41. Meyer TE, Bansal AK (2005) Stabilization against hyperthermal denaturation through increased CG content can explain the discrepancy between whole genome and 16S rRNA analyses. Biochemistry 44:11458–11465PubMedCrossRefGoogle Scholar
  42. Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869PubMedCrossRefGoogle Scholar
  43. Nakagawa S, Shtaih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach AL (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268PubMedCrossRefGoogle Scholar
  44. Nunoura T, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2008a) Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 58:676–681PubMedCrossRefGoogle Scholar
  45. Nunoura T, Oida H, Miyazaki M, Suzuki Y (2008b) Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Trough. Int J Syst Evol Microbiol 58:659–665PubMedCrossRefGoogle Scholar
  46. Oshima K, Chiba Y, Igarashi Y, Arai H, Ishii M (2012) Phylogenetic position of Aquificales based on the whole genome sequences of six Aquificales species. Int J Evol Biol 2012:859264PubMedGoogle Scholar
  47. Perez-Rodriguez I, Grosche A, Massenburg L, Starovoytov V, Lutz RA, Vetriani C (2012) Phorcysia thermohydrogeniphila gen. nov., sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2388–2394PubMedCrossRefGoogle Scholar
  48. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596PubMedCrossRefGoogle Scholar
  49. Reysenbach AL (2001) Phylum BI. Aquificae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 359–367CrossRefGoogle Scholar
  50. Reysenbach AL (2002) Aquificales ord. nov. In: Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List No. 85. Int J Syst Evol Microbiol 52:685–690Google Scholar
  51. Reysenbach AL, Hamamura N, Podar M, Griffiths E, Ferreira S, Hochstein R, Heidelberg J, Johnson J, Mead D, Pohorille A, Sarmiento M, Schweighofer K, Seshadri R, Voytek MA (2009) Complete and draft genome sequences of six members of the Aquificales. J Bacteriol 191:1992–1993PubMedCrossRefGoogle Scholar
  52. Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459PubMedCrossRefGoogle Scholar
  53. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804PubMedCrossRefGoogle Scholar
  54. Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373PubMedCrossRefGoogle Scholar
  55. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003a) Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827PubMedCrossRefGoogle Scholar
  56. Takai K, Nakagawa S, Sako Y, Horikoshi K (2003b) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954PubMedCrossRefGoogle Scholar
  57. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  58. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Lectures on mathematics in the life sciences. American Mathematical Society, Providence, pp 57–86Google Scholar
  59. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedCrossRefGoogle Scholar
  60. Wirth R, Sikorski J, Brambilla E, Misra M, Lapidus A, Copeland A, Nolan M, Lucas S, Chen F, Tice H, Cheng JF, Han C, Detter JC, Tapia R, Bruce D, Goodwin L, Pitluck S, Pati A, Anderson I, Ivanova N, Mavromatis K, Mikhailova N, Chen A, Palaniappan K, Bilek Y, Hader T, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Thermocrinis albus type strain (HI 11/12). Stand Genomic Sci 2:194–202PubMedCrossRefGoogle Scholar
  61. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations