Advertisement

Antonie van Leeuwenhoek

, Volume 104, Issue 3, pp 309–314 | Cite as

Aliidiomarina sanyensis sp. nov., a hexabromocyclododecane assimilating bacterium from the pool of Spirulina platensis cultivation, Sanya, China

  • Guanghua Wang
  • Hualian Wu
  • Xiaoyong Zhang
  • Hao Zhang
  • Xi Yang
  • Xinpeng Tian
  • Jie Li
  • Wenzhou Xiang
  • Xiang Li
Original Paper

Abstract

A novel Gram-negative, rod shaped, motile, non-spore-forming, aerobic, brominated flame retardant hexabromocyclododecane-assimilating bacterium, designated strain GYP-17T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China. Colonies on 1/10 strength of marine Glycerol Enriched Medium plates were circular, dark-brown, 1–2 mm in diameter, and with regular margins. Growth occurred at 10–45 °C, 1–10 % (w/v) NaCl and pH of 7–9. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and one unidentified polar lipid. The major fatty acids were iso-C17:1ω9c/10-methyl-C16:0 (summed feature 9, 20.75 %), iso-C15:0 (17.70 %) and C16:0 (6.40 %). The major respiratory quinone was Q-8. The DNA G + C content of the type strain was 53.6 mol%. Phylogenetic analysis revealed that strain GYP-17T was a member of the genus Aliidiomarina and closely related to Aliidiomarina haloalkalitolerans with a 16S rDNA sequence similarity of 96.36 %. Results from the polyphasic taxonomy study support the conclusion that strain GYP-17T represents a novel Aliidiomarina species, for which the name Aliidiomarina sanyensis sp. nov. is proposed. The type strain of A. sanyensis is GYP-17T (=KCTC 32218T =LMG 27471T).

Keywords

Aliidiomarina sanyensis 16S rDNA based phylogeny Chemotaxonomy 

Notes

Acknowledgments

This research was supported by the National Basic Research Program of China (No. 2010CB833801), the National Natural Science Foundation of China (No. 41206136), Funds for marine renewable energy (GHME2011SW04), Public science and technology research funds projects of ocean (201005031-5), Guangdong Province and Chinese Academy of Science cooperation Foundation (2012B091100276), Provincial Collaborative Foundation Project of Guangdong (9351007002000001).

Supplementary material

10482_2013_9949_MOESM1_ESM.docx (380 kb)
Supplementary material 1 (DOCX 379 kb)

References

  1. Andelman JB, Suess MJ (1970) Polynuclear aromatic hydrocarbons in the water environment. Bull World Health Org 43:479–508PubMedGoogle Scholar
  2. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedCrossRefGoogle Scholar
  3. Binark N, Guven KC, Gezgin T, Unlu S (2000) Oil pollution of marine algae. Bull Environ Contam Toxicol 64:866–872PubMedCrossRefGoogle Scholar
  4. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11(7):1246–1255PubMedCrossRefGoogle Scholar
  5. Collins MD (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 345–401Google Scholar
  6. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, BeijingGoogle Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376Google Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  9. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  10. Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012) Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78:628–637PubMedCrossRefGoogle Scholar
  11. Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD (2013) Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79(1):205–214PubMedCrossRefGoogle Scholar
  12. Huang SP, Chang HY, Chen JS, Jean WD, Shieh WY (2012) Aliidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water from Bitou Harbour, Taiwan. Int J Syst Evol Microbiol 62(Pt 1):155–161PubMedCrossRefGoogle Scholar
  13. Ivanova EP, Romanenko LA, Chun J, Matte MH, Matte GR, Mikhailov VV, Svetashev VI, Huq A, Maugel T, Colwell RR (2000) Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including description of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50:901–907PubMedCrossRefGoogle Scholar
  14. Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788PubMedCrossRefGoogle Scholar
  15. Jean WD, Shieh WY, Chiu HH (2006) Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae. Int J Syst Evol Microbiol 56:899–905PubMedCrossRefGoogle Scholar
  16. Kamekura M (1993) Lipids of extreme halophiles. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 135–161Google Scholar
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  19. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  21. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  22. Pomeroy LR, Williams PJL, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20(2):28–33CrossRefGoogle Scholar
  23. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829PubMedCrossRefGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  25. Srinivas TNR, Nupur, Anil Kumar P (2012) Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater. Antonie Van Leeuwenhoek 101:761–768PubMedCrossRefGoogle Scholar
  26. Taborda M, Antunes A, Tiago I, Verssimo A (2009) Description of Idiomarina insulisalsae sp. nov., isolated from the soil of a sea salt evaporation pond, proposal to transfer the species of the genus Pseudidiomarina to the genus Idiomarina and emended description of the genus Idiomarina. Syst Appl Microbiol 32:371–378PubMedCrossRefGoogle Scholar
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  28. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Guanghua Wang
    • 1
  • Hualian Wu
    • 1
  • Xiaoyong Zhang
    • 1
  • Hao Zhang
    • 1
  • Xi Yang
    • 1
  • Xinpeng Tian
    • 1
  • Jie Li
    • 1
  • Wenzhou Xiang
    • 1
  • Xiang Li
    • 1
  1. 1.Key Laboratory of Marine Bio-resources Sustainable Utilization (LMB-CAS) Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China sea Institute of OceaonlogyChinese Academy of SciencesGuangzhouChina

Personalised recommendations