Antonie van Leeuwenhoek

, Volume 104, Issue 1, pp 1–24 | Cite as

Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov.

  • Mobolaji Adeolu
  • Radhey S. Gupta
Original Paper


The species from the order Neisseriales are currently distinguished from other bacteria on the basis of branching in 16S rRNA gene trees. For this order containing a single family, Neisseriaceae, no distinctive molecular, biochemical, or phenotypic characters are presently known. We report here detailed phylogenetic and comparative analyses on the 27 genome sequenced species of the order Neisseriales. Our comparative genomic analyses have identified 54 conserved signature indels (CSIs) in widely distributed proteins that are specific for either all of the sequenced Neisseriales species or a number of clades within this order that are also supported by phylogenetic analyses. Of these CSIs, 11 are specifically present in all of the sequenced species from this order, but are not found in homologous proteins from any other bacteria. These CSIs provide novel molecular markers specific for, and delimiting, this order. Twenty-one CSIs in diverse proteins are specific for a group comprised of the genera Neisseria, Eikenella, Kingella, and Simonsiella (Clade I), which are obligate host-associated organisms, lacking flagella and exhibiting varied morphology. The species from these genera also formed a strongly supported clade in phylogenetic trees based upon concatenated protein sequences; a monophyletic grouping of these genera and other genera displaying similar morphological characteristics was also observed in the 16S rRNA gene tree. A second clade (Clade II), supported by seven of the identified CSIs and phylogenetic trees based upon concatenated protein sequences, grouped together species from the genera Chromobacterium, Laribacter, and Pseudogulbenkiania that are rod-shaped bacteria, which display flagella-based motility and are capable of free living. The remainder of the CSIs were uniquely shared by smaller groups within these two main clades. Our analyses also provide novel insights into the evolutionary history of the Neisseriales and suggest that the CSIs that are specific for the Clade I species may play an important role in the evolution of obligate host-association within this order. On the basis of phylogenetic analysis, the identified CSIs, and conserved phenotypic characteristics of different Neisseriales genera, we propose a division of this order into two families: an emended family Neisseriaceae (corresponding to Clade I) containing the genera Alysiella, Bergeriella, Conchiformibius, Eikenella, Kingella, Neisseria, Simonsiella, Stenoxybacter, Uruburuella and Vitreoscilla and a new family, Chromobacteriaceae fam. nov., harboring the remainder of the genera from this order (viz. Andreprevotia, Aquaspirillum, Aquitalea, Chitinibacter, Chitinilyticum, Chitiniphilus, Chromobacterium, Deefgea, Formivibrio, Gulbenkiania, Iodobacter, Jeongeupia, Laribacter, Leeia, Microvirgula, Paludibacterium, Pseudogulbenkiania, Silvimonas, and Vogesella).


Neisseriales Neisseriales taxonomy Betaproteobacteria Phylogenetic trees Neisseriaceae Chromobacteriaceae Conserved signature indels Molecular signatures 

Supplementary material

10482_2013_9920_MOESM1_ESM.pdf (264 kb)
Supplementary material 1 (PDF 263 kb)


  1. Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I, White B, Parkhill J, Maiden MCJ (2010) Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020–06. BMC Genomics 11:652PubMedCrossRefGoogle Scholar
  2. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J, Maiden MCJ (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158:1570–1580PubMedCrossRefGoogle Scholar
  3. Bentley SD, Vernikos GS, Snyder LAS, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K (2007) Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3:e23PubMedCrossRefGoogle Scholar
  4. Bergonzini C (1881) Sopra un nuovo bacterio colorato. Annuar Soc Nat Modena 2:149–158Google Scholar
  5. Bhandari V, Ahmod NZ, Shah HN, and Gupta RS (2013). Molecular signatures for the Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.051805-0
  6. Bøvre K (1984) Family VIII Neisseriaceae Prévot 1933; 119. In: Holt JG (ed) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 288–296Google Scholar
  7. Brenner DJ, Krieg NR, Garrity GM, Staley JT (2005) Bergey’s manual of systematic bacteriology: the proteobacteria. Springer, New YorkCrossRefGoogle Scholar
  8. Budroni S, Siena E, Hotopp JCD, Seib KL, Serruto D, Nofroni C, Comanducci M, Riley DR, Daugherty SC, Angiuoli SV (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci 108:4494–4499PubMedCrossRefGoogle Scholar
  9. Byrne-Bailey KG, Weber KA, Coates JD (2012) Draft genome sequence of the anaerobic, nitrate-dependent, Fe(II)-oxidizing bacterium Pseudogulbenkiania ferrooxidans strain 2002. J Bacteriol 194:2400–2401PubMedCrossRefGoogle Scholar
  10. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  11. Chang SC, Chen WM, Wang JT, Wu MC (2007) Chitinilyticum aquatile gen. nov., sp. nov., a chitinolytic bacterium isolated from a freshwater pond used for Pacific white shrimp culture. Int J Syst Evol Microbiol 57:2854–2860PubMedCrossRefGoogle Scholar
  12. Chern LL, Stackebrandt E, Lee SF, Lee FL, Chen JK, Fu HM (2004) Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391PubMedCrossRefGoogle Scholar
  13. Chung GT, Yoo JS, Oh HB, Lee YS, Cha SH, Kim SJ, Yoo CK (2008) Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol 190:6035–6036PubMedCrossRefGoogle Scholar
  14. Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedCrossRefGoogle Scholar
  15. Cohn AC, MacNeil JR, Harrison LH, Hatcher C, Theodore J, Schmidt M, Pondo T, Arnold KE, Baumbach J, Bennett N (2010) Changes in Neisseria meningitidis disease epidemiology in the United States, 1998–2007: implications for prevention of meningococcal disease. Clin Infect Dis 50:184–191PubMedCrossRefGoogle Scholar
  16. de Vasconcelos ATR, de Almeida DF, Hungria M, Guimaraes CT, Antonio RV, Almeida FC, de Almeida LGP, de Almeida R, Alves-Gomes JA, and Andrade EM (2003). The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proceedings of the national academy of sciences of the United States of America 11660–11665Google Scholar
  17. Dewhirst FE, Paster BJ, Bright PL (1989) Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int J Syst Bacteriol 39:258–266CrossRefGoogle Scholar
  18. Dewhirst FE, Chen CKC, Paster BJ, Zambon JJ (1993) Phylogeny of species in the family Neisseriaceae isolated from human dental plaque and description of Kingella orale sp. nov. Int J Syst Bacteriol 43:490–499PubMedCrossRefGoogle Scholar
  19. Euzeby JP (2012). List of prokaryotic names with standing in nomenclature.
  20. Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412PubMedCrossRefGoogle Scholar
  21. Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek 101:45–54PubMedCrossRefGoogle Scholar
  22. Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112PubMedCrossRefGoogle Scholar
  23. Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59:234–247PubMedCrossRefGoogle Scholar
  24. Gillis M, Logan N (2005) Chromobacterium Bergonzini 1881, 153 AL. In: Brenner DJ, Krieg NR, Garrity GM, Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 824–827CrossRefGoogle Scholar
  25. Griffiths E, Petrich AK, Gupta RS (2005) Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology 151:2647–2657PubMedCrossRefGoogle Scholar
  26. Grimes DJ, Woese CR, MacDonell MT, Colwell RR (1997) Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov. Int J Syst Bacteriol 47:19–27PubMedCrossRefGoogle Scholar
  27. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435PubMedGoogle Scholar
  28. Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202PubMedCrossRefGoogle Scholar
  29. Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510PubMedCrossRefGoogle Scholar
  30. Gupta RS and Bhandari V (2011). Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. Antonie van Leeuwenhoek 1–34Google Scholar
  31. Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol 7:106PubMedCrossRefGoogle Scholar
  32. Gupta RS, Chander P, and George S (2012). Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie van Leeuwenhoek 1–21Google Scholar
  33. Gupta RS, Chen WJ, Adeolu M, and Chai Y (2013). Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol MicrobiolGoogle Scholar
  34. Harmsen D, Singer C, Rothganger J, Tønjum T, de Hoog GS, Shah H, Albert J, Frosch M (2001) Diagnostics of Neisseriaceae and Moraxellaceae by ribosomal DNA sequencing: ribosomal differentiation of medical microorganisms. J Clin Microbiol 39:936–942PubMedCrossRefGoogle Scholar
  35. Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412PubMedCrossRefGoogle Scholar
  36. Hedlund BP, Kuhn DA (2006) The genera Simonsiella and Alysiella. Prokaryotes 5:828–839CrossRefGoogle Scholar
  37. Hedlund BP, Staley JT (2002) Phylogeny of the genus Simonsiella and other members of the Neisseriaceae. Int J Syst Evol Microbiol 52:1377–1382PubMedCrossRefGoogle Scholar
  38. Ishii S, Tago K, Nishizawa T, Oshima K, Hattori M, Senoo K (2011) Complete genome sequence of the denitrifying and N2O-reducing bacterium Pseudogulbenkiania sp. strain NH8B. J Bacteriol 193:6395–6396PubMedCrossRefGoogle Scholar
  39. Jackson FL, Goodman YE (1972) Transfer of the facultatively anaerobic organism Bacteroides corrodens Eiken to a new genus, Eikenella. Int J Syst Bacteriol 22:73–77CrossRefGoogle Scholar
  40. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403PubMedCrossRefGoogle Scholar
  41. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci: CABIOS 8:275–282PubMedGoogle Scholar
  42. Kaplan JB, Lo C, Xie G, Johnson SL, Chain PSG, Donnelly R, Kachlany SC, Balashova NV (2012) Genome sequence of Kingella kingae septic arthritis isolate PYKK081. J Bacteriol 194:3017PubMedCrossRefGoogle Scholar
  43. Kumar R, Banerjee AK, Bowdre JH, McElroy LJ, Krieg NR (1974) Isolation, characterization, and taxonomy of Aquaspirillum bengal sp. nov. Int J Syst Bacteriol 24:453–458CrossRefGoogle Scholar
  44. Kwon SW, Kim BY, Kim WG, Yoo KH, Yoo SH, Son JA, Weon HY (2008) Paludibacterium yongneupense gen. nov., sp. nov., isolated from a wetland, Yongneup, in Korea. Int J Syst Evol Microbiol 58:190–194PubMedCrossRefGoogle Scholar
  45. Lau HT, Faryna J, Triplett EW (2006) Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int J Syst Evol Microbiol 56:867–871PubMedCrossRefGoogle Scholar
  46. Lim JM, Jeon CO, Lee GS, Park DJ, Kang UG, Park CY, Kim CJ (2007) Leeia oryzae gen. nov., sp. nov., isolated from a rice field in Korea. Int J Syst Evol Microbiol 57:1204–1208PubMedCrossRefGoogle Scholar
  47. Lin MC, Chou JH, Arun AB, Young CC, Chen WM (2008) Pseudogulbenkiania subflava gen. nov., sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 58:2384–2388PubMedCrossRefGoogle Scholar
  48. Logan NA, Logan NA (1989) Numerical taxonomy of violet-pigmented, gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov. Int J Syst Bacteriol 39:450–456CrossRefGoogle Scholar
  49. Long PA, Sly LI, Pham AV, Davis GHG (1981) Characterization of Morococcus cerebrosus gen. nov., sp. nov. and comparison with Neisseria mucosa. Int J Syst Bacteriol 31:294–301CrossRefGoogle Scholar
  50. McCutcheon JP, Moran NA (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26PubMedGoogle Scholar
  51. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci 93:2873–2878PubMedCrossRefGoogle Scholar
  52. Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586PubMedCrossRefGoogle Scholar
  53. Moß KS, Hartmann SC, Müller I, Fritz C, Krügener S, Zibek S, Hirth T, Rupp S (2012) Amantichitinum ursilacus gen. nov., sp. nov., a chitin-degrading bacterium found at the Bärensee, Stuttgart, Germany. Int J Syst Evol Microbiol 63:98–103PubMedCrossRefGoogle Scholar
  54. NCBI (2012) NCBI genome database.
  55. Patureau D, Godon JJ, Dabert P, Bouchez T, Bernet N, Delgenes JP, Moletta R (1998) Microvirgula aerodenitrificans gen. nov., sp. nov., a new Gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int J Syst Bacteriol 48:775–782PubMedCrossRefGoogle Scholar
  56. Pot B, Willems A, Gillis M, De Ley J (1992) Intra-and intergeneric relationships of the genus Aquaspirillum: prolinoborus, a new genus for Aquaspirillum fasciculus, with the species Prolinoborus fasciculus comb. nov. Int J Syst Bacteriol 42:44–57CrossRefGoogle Scholar
  57. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596PubMedCrossRefGoogle Scholar
  58. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459PubMedCrossRefGoogle Scholar
  59. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804PubMedCrossRefGoogle Scholar
  60. Rusniok C, Vallenet D, Floquet S, Ewles H, Mouze-Soulama C, Brown D, Lajus A, Buchrieser C, Medigue C, Glaser P (2009) NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. Genome Biol 10:R110PubMedCrossRefGoogle Scholar
  61. Sato K, Kato Y, Taguchi G, Nogawa M, Yokota A, Shimosaka M (2009) Chitiniphilus shinanonensis gen. nov., sp. nov., a novel chitin-degrading bacterium belonging to Betaproteobacteria. J Gen Appl Microbiol 55:147–153PubMedCrossRefGoogle Scholar
  62. Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373PubMedCrossRefGoogle Scholar
  63. Sly LI (2005). Genus incertae sedis XV. Morococcus Long, Sly, Pham and Davis 1981, 300VP. In: Brenner DJ, Krieg NR, Garrity GM, and Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 861–863Google Scholar
  64. Stackebrandt E, Lang E, Cousin S, Päuker O, Brambilla E, Kroppenstedt R, Lünsdorf H (2007) Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria. Int J Syst Evol Microbiol 57:639–645PubMedCrossRefGoogle Scholar
  65. Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–2210PubMedCrossRefGoogle Scholar
  66. Strohl WR, Schmidt TM, Lawry NH, Mezzino MJ, Larkin JM (1986) Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiformis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Int J Syst Bacteriol 36:302–313CrossRefGoogle Scholar
  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  68. Tanaka K, Nakamura K, Mikami E (1991) Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov. Arch Microbiol 155:491–495CrossRefGoogle Scholar
  69. Tanner A, Maiden MF, Paster BJ, Dewhirst FE (2007) The impact of 16S ribosomal RNA-based phylogeny on the taxonomy of oral bacteria. Periodontology 2000(5):26–51Google Scholar
  70. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Lectures on mathematics in the life sciences. American Mathematical Society, Providence, pp 57–86Google Scholar
  71. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815PubMedCrossRefGoogle Scholar
  72. Tønjum T (2005a). Genus I. Neisseria Trevisan 1885, 105AL. In: Brenner DJ, Krieg NR, Garrity GM and Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 777–798Google Scholar
  73. Tønjum T (2005b). Order IV. Neisseriales ord. nov. In: Brenner DJ, Krieg NR, Garrity GM and Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, p 774Google Scholar
  74. Trevisan V (1885) Caratteri di alcuni nuovi generi di Batteriacee. Atti della Accademia Fisio-Medico-Statistica in Milano. Series 4:92–107Google Scholar
  75. Vaz-Moreira I, Nobre MF, Nunes OC, Manaia CM (2007) Gulbenkiania mobilis gen. nov., sp. nov., isolated from treated municipal wastewater. Int J Syst Evol Microbiol 57:1108–1112PubMedCrossRefGoogle Scholar
  76. Vela AI, Collins MD, Lawson PA, García N, Domínguez L, Fernández-Garayzábal JF (2005) Uruburuella suis gen. nov., sp. nov., isolated from clinical specimens of pigs. Int J Syst Evol Microbiol 55:643–647PubMedCrossRefGoogle Scholar
  77. Weon HY, Kim BY, Yoo SH, Joa JH, Kwon SW, Kim WG (2007) Andreprevotia chitinilytica gen. nov., sp. nov., isolated from forest soil from Halla Mountain, Jeju Island, Korea. Int J Syst Evol Microbiol 57:1572–1575PubMedCrossRefGoogle Scholar
  78. Wernegreen JJ (2011) Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS One 6:e28905PubMedCrossRefGoogle Scholar
  79. Wernegreen JJ, Moran NA (1999) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol Biol Evol 16:83–97PubMedCrossRefGoogle Scholar
  80. Wertz JT, Breznak JA (2007) Stenoxybacter acetivorans gen. nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl Environ Microbiol 73:6819–6828PubMedCrossRefGoogle Scholar
  81. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedCrossRefGoogle Scholar
  82. Woo PCY, Lau SKP, Tse H, Teng JLL, Curreem SOT, Tsang AKL, Fan RYY, Wong GKM, Huang Y, Loman NJ, Snyder LAS, Cai JJ, Huang JD, Mak W, Pallen MJ, Lok S, Yuen KY (2009) The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLoS Genet 5:e1000416PubMedCrossRefGoogle Scholar
  83. World Health Organization (2011). Prevalence and incidence of selected sexually transmitted infections, Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas vaginalis: methods and results used by WHO to generate 2005 estimates. Geneva: the Organization; 2011. World Health Organization, Geneva. ISBN 9789241563598Google Scholar
  84. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ (2009) A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462:1056–1060PubMedCrossRefGoogle Scholar
  85. Xie CH, Yokota A (2005) Phylogenetic analysis of Alysiella and related genera of Neisseriaceae: proposal of Alysiella crassa comb. nov., Conchiformibium steedae gen. nov., comb. nov., Conchiformibium kuhniae sp. nov. and Bergeriella denitrificans gen. nov., comb. nov. J Gene Appl Microbiol 51:1–10CrossRefGoogle Scholar
  86. Yang HC, Im WT, An DS, Park W, Kim IS, Lee ST (2005) Silvimonas terrae gen. nov., sp. nov., a novel chitin-degrading facultative anaerobe belonging to the Betaproteobacteria. Int J Syst Evol Microbiol 55:2329–2332PubMedCrossRefGoogle Scholar
  87. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedCrossRefGoogle Scholar
  88. Yi H, Cho YJ, Yoon SH, Park SC, Chun J (2012) Comparative genomics of Neisseria weaveri clarifies the taxonomy of this species and identifies genetic determinants that may be associated with virulence. FEMS Microbiol Lett 328(2):100–105PubMedCrossRefGoogle Scholar
  89. Yoon JH, Choi JH, Kang SJ, Choi NS, Lee JS, Song JJ (2010) Jeongeupia naejangsanensis gen. nov., sp. nov., a cellulose-degrading bacterium isolated from forest soil from Naejang Mountain in Korea. Int J Syst Evol Microbiol 60:615–619PubMedCrossRefGoogle Scholar
  90. Yuen KY, Woo PCY, Teng JLL, Leung KW, Wong MKM, Lau SKP (2001) Laribacter hongkongensis gen. nov., sp. nov., a novel gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema. J Clin Microbiol 39:4227–4232PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations