Advertisement

Antonie van Leeuwenhoek

, Volume 103, Issue 6, pp 1329–1341 | Cite as

The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley desert

  • Eric Prestel
  • Christophe Regeard
  • Sylvie Salamitou
  • Julie Neveu
  • Michael S. DuBowEmail author
Original Paper

Abstract

Arid zones cover over 30 % of the Earth’s continental surface. In order to better understand the role of microbes in this type of harsh environment, we isolated and characterized the bacteriophages from samples of the surface sand of the Mesquite Flats region via electron microscopy and DNA sequencing of a select number of cloned phage DNAs. An electron microscopic analysis of the recovered virus-like particles revealed at least 11 apparently different morphotypes sharing structural characteristics of the Caudoviridae family of tailed phages. We found that 36 % of the sequences contained no significant identity (e-value >10−3) with sequences in the databases. Pilot sequencing of cloned 16S rRNA genes identified Bacteroidetes and Proteobacteria as the major bacterial groups present in this severe environment. The majority of the 16S rDNA sequences from the total (uncultured) bacterial population displayed ≤96 % identity to 16S rRNA genes in the database, suggesting an unexplored bacterial population likely adapted to a desert environment. In addition, we also isolated and identified 38 cultivable bacterial strains, the majority of which belonged to the genus Bacillus. Mitomycin-C treatment of the cultivable bacteria demonstrated that the vast majority (84 %) contained at least one SOS-inducible prophage.

Keywords

Desert Electron microscopy 16S rDNA Bacteria Bacteriophages 

Notes

Acknowledgments

The authors would like to thank Jeril Degrouard and Danielle Jaillard for their help with the electron microscopy, Evelyne Marguet and Patrick Forterre (Université Paris-Sud, Orsay, France) for their generosity in providing the sand samples from the Mesquite Flats site of Death Valley, and the Editor and Reviewers for their terrific comments, criticisms and suggestions. This work was supported by the AQUAPHAGE program of the Agence Nationale de la Recherche (ANR), France, and the Centre National de la Recherche Scientifique (CNRS, France).

References

  1. Ackermann HW, DuBow MS (1987) Viruses of procaryotes. CRC Press, ClevelandGoogle Scholar
  2. Ackermann HW, DuBow MS (2000) Myorividae, siphoviridae, podoviridae. In: Van Regenmotel MHV, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, Mcgeoch DJ, Pringle CR, Wickner RB (eds) Virus taxonomy classification of viruses seventh report of the international committee on taxonomy of viruses. Academic Press, San Diego, pp 69–109Google Scholar
  3. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viriomes of four oceanic regions. PLoS Biol 4:2121–2131CrossRefGoogle Scholar
  4. Armon R (2011) Soil bacteria and bacteriophages. In: Witzany G (ed) Biocommunication in soil microorganisms, soil biology 23. Springer-Verlag, Berlin, pp 67–112CrossRefGoogle Scholar
  5. Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infesting bacteria in soil. Appl Environ Microbiol 69:285–289PubMedCrossRefGoogle Scholar
  6. Barondess JJ, Beckwith J (1995) Bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J Bacteriol 177:1247–1253PubMedGoogle Scholar
  7. Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468PubMedCrossRefGoogle Scholar
  8. Bohlander SK, Espinosa R 3rd, Le Beau MM, Rowley JD, Diaz MO (1992) A method for the rapid sequence-independent amplification of microdissected chromosomal material. Genomics 13:1322–1324PubMedCrossRefGoogle Scholar
  9. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223PubMedCrossRefGoogle Scholar
  10. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2004) Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci 271:565–574PubMedCrossRefGoogle Scholar
  11. Canchaya C, Fournous G, Chibani-chennoufi S, Dillmann ML, Brussow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424PubMedCrossRefGoogle Scholar
  12. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525PubMedCrossRefGoogle Scholar
  13. Chenna R, Sugawara H, Koite T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
  14. Chesson P, Gebauer RL, Schwinning S, Huntly N, Wiegand K, Ernest MS, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253PubMedCrossRefGoogle Scholar
  15. Crump BC, Armbrust VE, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204PubMedGoogle Scholar
  16. Donlan R (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890PubMedCrossRefGoogle Scholar
  17. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama desert, Chile. Appl Environ Microbiol 72:7902–7908PubMedCrossRefGoogle Scholar
  18. Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045PubMedCrossRefGoogle Scholar
  19. Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031PubMedGoogle Scholar
  20. Elasri MO, Reid T, Hutchens S, Miller ME (2000) Response of a Pseudomonas aeruginosa biofilm community to DNA-damaging chemical agents. FEMS Microbiol Ecol 33:21–25CrossRefGoogle Scholar
  21. Fancello L, Trape S, Robert C, Boyer M, Popgeorgiev N, Raoult D, Desnues C (2013) Viruses in the desert: a metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara. ISME J 7:359–369PubMedCrossRefGoogle Scholar
  22. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066PubMedCrossRefGoogle Scholar
  23. Fouts DE (2006) Phage finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34:5839–5851PubMedCrossRefGoogle Scholar
  24. Ghosh D, Roy K, Williamson KE, White DC, Wommack KE, Sublette KL, Radosevich M (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502PubMedCrossRefGoogle Scholar
  25. Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109PubMedCrossRefGoogle Scholar
  26. Gommeaux M, Barakat M, Montagnac G, Christen R, Guyot F, Heulin T (2010) Mineral and bacterial diversities of desert sand grains from south to east Morocco. Geomicrobiol J 27:76–92CrossRefGoogle Scholar
  27. Hendrix RW, Hatfull GF, Smith MC (2003) Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257PubMedCrossRefGoogle Scholar
  28. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  29. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644PubMedCrossRefGoogle Scholar
  30. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  31. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  32. Le Romancer M, Gaillard M, Geslin C, Prieur D (2007) Viruses in extreme environments. Rev Environ Sci Biotechnol 6:17–31CrossRefGoogle Scholar
  33. Leroy M, Prigent M, Dutertre M, Confalonieri F, DuBow MS (2008) Bacteriophage morphotype and genome diversity in Seine River sediment. Freshw Biol 53:1176–1185CrossRefGoogle Scholar
  34. Lewis LA, Lewis PO (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst Biol 54:936–947PubMedCrossRefGoogle Scholar
  35. Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005) The players in a mutualistic symbiosis: insects, bacteria, viruses and virulence genes. Proc Natl Acad Sci USA 102:16919–16926PubMedCrossRefGoogle Scholar
  36. Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245PubMedCrossRefGoogle Scholar
  37. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, LaComb M, Betancourt JL, Wing RA, Soderlund CA, Maier RM (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama desert, Chile. Extremophiles 16:553–566PubMedCrossRefGoogle Scholar
  38. Prestel E, Salamitou S, DuBow MS (2008) An examination of the bacteriophages and bacteria of the Namib desert. J Microbiol 46:364–372PubMedCrossRefGoogle Scholar
  39. Prestel E, Regeard C, Andrews J, Oger P, DuBow MS (2012) A novel bacteriophage morphotype with a ribbon-like structure at the tail extremity. Res J Microbiol 7:75–81CrossRefGoogle Scholar
  40. Prigent M, Leroy M, Confalonieri F, Dutertre M, DuBow MS (2005) A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara desert. Extremophiles 9:289–296PubMedCrossRefGoogle Scholar
  41. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedGoogle Scholar
  42. Romero P, Lopez R, Garcia E (2004) Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 322:239–252PubMedCrossRefGoogle Scholar
  43. Rossi P (1994) Advances in biological tracer techniques for hydrology and hydrogeology using bacteriophages. Ph.D. thesis, University of Neuchâtel, Neuchâtel, SwitzerlandGoogle Scholar
  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  45. Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421PubMedCrossRefGoogle Scholar
  46. Stopar D, Cerne A, Zigman M, Poljak-Prijatelj M, Turk V (2004) Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the Gulf of Trieste. Microb Ecol 47:1–8PubMedCrossRefGoogle Scholar
  47. Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2009) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60CrossRefGoogle Scholar
  48. Tolias PP, DuBow MS (1985) The cloning and characterization of the bacteriophage D108 regulatory DNA-binding protein Ner. EMBO J 4:3031–3037PubMedGoogle Scholar
  49. Velpandian T, Saluja V, Ravi AK, Kumari SS, Mathur R, Ranjan N, Ghose S (2005) Evaluation of the stability of extemporaneously prepared ophthalmic formulation of mitomycin C. J Occul Pharmacol Ther 21:217–222CrossRefGoogle Scholar
  50. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 99:15687–15692PubMedCrossRefGoogle Scholar
  51. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbio Rev 28:127–181CrossRefGoogle Scholar
  52. West NE (1990) Structure and function of microphytic soils crust in wildland ecosystems of arid to semi-arid regions. Adv Ecol Res 20:179–223CrossRefGoogle Scholar
  53. Williamson KE (2011) Soil phage ecology: abundance, distribution, and interaction with bacterial hosts. In: Witzany G (ed) Biocommunication in soil microorganisms, soil biology 23. Springer-Verlag, Berlin, pp 113–136CrossRefGoogle Scholar
  54. Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633PubMedCrossRefGoogle Scholar
  55. Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574PubMedCrossRefGoogle Scholar
  56. Williamson KE, Helton RR, Wommack KE (2012) Bias in bacteriophage morphological classification by transmission electron microscopy due to breakage or loss of tail structures. Microsc Res Tech 75:452–457PubMedCrossRefGoogle Scholar
  57. Yang SY, Liu H, Liu R, Zhang KY, Lai R (2009) Saccharibacillus kuerlensis sp. nov., isolated from a desert soil. Int J Sys Evol Microbiol 59:953–957CrossRefGoogle Scholar
  58. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Envrion Microbiol 62:316–322Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eric Prestel
    • 1
    • 2
  • Christophe Regeard
    • 1
  • Sylvie Salamitou
    • 1
  • Julie Neveu
    • 1
  • Michael S. DuBow
    • 1
    Email author
  1. 1.Laboratoire de Génomique et Biodiversité Microbienne des Biofilms, Institut de Génétique et Microbiologie; CNRS UMR 8621Univ Paris-SudOrsayFrance
  2. 2.Laboratoire de Génétique MicrobienneINRAJouy-en-JosasFrance

Personalised recommendations