Antonie van Leeuwenhoek

, Volume 103, Issue 6, pp 1395–1404 | Cite as

Identification of up-regulated proteins potentially involved in the antagonism mechanism of Bacillus amyloliquefaciens G1

Short Communication


The use of Bacillus probiotics has been demonstrated as a promising method in the biocontrol of bacterial diseases in aquaculture. However, the molecular antibacterial mechanism of Bacillus still remains unclear. In order to explore the antibacterial mechanism of the potential antagonistic Bacillus amyloliquefaciens strain G1, comparative proteomics between B. amyloliquefaciens strain G1 and its non-antagonistic mutant strain was investigated. The 2-dimensional electrophoresis gel maps of their total extracted proteins were described and 42 different proteins were found to be highly expressed in strain G1 in comparison with those in the mutant strain. 35 of these up-regulated proteins were successfully identified using MALDI-TOF-TOF MS and databank analysis, and their biological functions were analyzed through the KEGG database. The increased expression of these proteins suggested that high levels of energy metabolism, biosynthesis and stress resistance could play important roles in strain G1’s antagonism. To our knowledge, this is the first report on the proteins involved in the antagonism mechanism of B. amyloliquefaciens using a proteomic approach and the proteomic data also contribute to a better understanding of the molecular basis for the antagonism of B. amyloliquefaciens.


Bacillus amyloliquefaciens Antagonism mechanism Proteomics Up-regulated proteins 


  1. Bah AM, Sun H, Chen F, Zhou J, Dai H, Zhang G, Wu F (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. J Hazard Mater 184:191–203PubMedCrossRefGoogle Scholar
  2. Balcázar JL, de Blas I, Ruiz-Zarzuela IR, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186PubMedCrossRefGoogle Scholar
  3. Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic Rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68(7):3328–3338PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Brass C, Volkmann CM, Philpott DE, Klein HP, Halde CJ, Stevens DA (1982) Spontaneous mutant of Blastomyces dermatitidis attenuated in virulence in mice. Med Mycol 20(2):145–158CrossRefGoogle Scholar
  6. Cacace G, Mazzeo M, Sorrentino A, Spada V, Malorni A, Siciliano RA (2010) Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J Proteomics 73:2021–2030PubMedCrossRefGoogle Scholar
  7. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482PubMedCrossRefGoogle Scholar
  8. Cao H, He S, Wei R, Diong M, Lu L (2011) Bacillus amyloliquefaciens G1: a potential antagonistic bacterium against eel-pathogenic Aeromonas hydrophila. Evid Based Complement Altern Med 2011:1–7Google Scholar
  9. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Sttrittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014PubMedCrossRefGoogle Scholar
  10. Del’Duca A, Cesar DE, Diniz CG, Abreu PC (2013) Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture 388–391:115–121CrossRefGoogle Scholar
  11. Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, le Tam T, Büttner K, Buurman G, Scharf C, Venz S, Völker U, Hecker M (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849–2876PubMedCrossRefGoogle Scholar
  12. Gohar M, Økstad OA, Gilois N, Sanchis V, Koisto AB, Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791PubMedCrossRefGoogle Scholar
  13. Kan B, Habibi H, Schmid M (2004) Proteome comparison of V. cholerae cultured in aerobic and anaerobic conditions. Proteomics 10:3061–3067CrossRefGoogle Scholar
  14. Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU (2005) Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69(1):101–123PubMedCrossRefGoogle Scholar
  15. Lippolis R, Gnoni A, Abbrescia A, Panelli D, Maiorano S, Paternoster MS, Sardanelli AM, Papa S, Gaballo A (2011) Comparative proteomic analysis of four Bacillus clausii strains: proteomic expression signature distinguishes protein profile of the strains. J Proteomics 74:2486–2855CrossRefGoogle Scholar
  16. Liu Y, Lin S, Huang C, Huang C (2008) A novel immunogenic spore coat-associated proteins in Bacillus anthracis: characterization via proteomics approaches and a vector-based vaccine system. Protein Expr Purif 57:72–80PubMedCrossRefGoogle Scholar
  17. Liu C, Chiu C, Wang S, Cheng W (2012) Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 33:699–706PubMedCrossRefGoogle Scholar
  18. Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol A 153:175–190Google Scholar
  19. Mizrahi I, Biran D, Ron EZ (2009) Involvement of the Pta-AckA pathway in protein folding and aggregation. Res Microbiol 160:80–84PubMedCrossRefGoogle Scholar
  20. Nikoskelainen S, Ouwehand A, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452PubMedCrossRefGoogle Scholar
  21. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846PubMedCrossRefGoogle Scholar
  22. Poetsch A, Schlüsener D, Florizone C, Eltis L, Menzel C, Rögner M, Steinert K, Roth U (2008) Improved identification of membrane proteins by MALDI-TOF MS/MS using vacuum sublimated matrix spots on an ultraphobic chip surface. J Biomol Tech 19(2):129–138PubMedGoogle Scholar
  23. Ramarathnam R, Bo S, Chen Y, Fernando WG, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 7:901–911CrossRefGoogle Scholar
  24. Ran C, Carrias A, Williams MA, Capps N, Dan BCT, Newton JC, Kloepper JW, Ooi EL, Browdy CL, Terhune JS, Liles MR (2012) Identification of Bacillus strains for biological control of catfish pathogens. PLoS One 9:e45793CrossRefGoogle Scholar
  25. Rengipipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191:271–288CrossRefGoogle Scholar
  26. Roepstorf P (1997) Mass spectrometry in protein studies from genome to function. Curr Opin Biotechnol 1:6–13CrossRefGoogle Scholar
  27. Rückert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155(1):78–85PubMedCrossRefGoogle Scholar
  28. Schimidt R, Bukau B, Mogk A (2009) Principles of general and regulatory proteolysis by AAA + proteases in Escherichia coli. Res Microbiol 160:629–636CrossRefGoogle Scholar
  29. Seo G, Kim S, Kim J, Nam D, Yoon M, Koo BS, Chai YG (2004) Targeting of Bacillus anthracis interaction factors for human macrophages using two-dimensional gel electrophoresis. Biochem Biophys Res Commun 322:854–859PubMedCrossRefGoogle Scholar
  30. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858PubMedCrossRefGoogle Scholar
  31. Shi Y, Liu Z, Xu J, Zhang J, Li X (2010) Construction of mutant of Erwinia carotovor by transposon Mini-Tn10 insertion. Hubei Agric Sci 49(1):12–16Google Scholar
  32. Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel F (2009) A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10:336. doi:10.1186/1471-2164-10-336 PubMedCrossRefGoogle Scholar
  33. Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29:803–809PubMedCrossRefGoogle Scholar
  34. Sun YZ, Yang HL, Ma RL, Song K, Lin WY (2011) Molecular analysis of antochthonous microbiota along the digestive tract of juvenile grouper Epinephelus coioides following probiotic Bacillus pumilus administration. J Appl Microbiol 110:1093–1103CrossRefGoogle Scholar
  35. Zhang QX, Tsukagoshi N, Miyashiro S, Udaka S (1983) Increased production of α-amylase by Bacillus amyloliquefaciens in the presence of glycine. Appl Environ Microbiol 10:293–295Google Scholar
  36. Zhang CX, Zhang X, Han F, Yang MF, Chen H, Chida T, Shen SH (2009) Comparative proteome analysis of two antagonist Bacillus subtilis strains. J Microbiol Biotechnol 19(4):351–357PubMedCrossRefGoogle Scholar
  37. Zhang G, Deng A, Xu Q, Liang Y, Chen N, Wen T (2011) Complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for industrial production of guanosine and ribavirin. J Bacteriol 193(12):3142–3143PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of Ministry of EducationShanghai Ocean UniversityShanghaiPeople’s Republic of China
  2. 2.National Pathogen Collection Center for Aquatic AnimalsShanghai Ocean UniversityShanghaiPeople’s Republic of China
  3. 3.Yangtze River Fisheries Research Institute, Chinese Academy of Fishery SciencesWuhanPeople’s Republic of China

Personalised recommendations