Antonie van Leeuwenhoek

, Volume 103, Issue 5, pp 947–961 | Cite as

Cyanobacteria: potential candidates for drug discovery

Review Paper


Cyanobacteria are a rich source of vast array of bioactive molecules including toxins with wide pharmaceutical importance. They show varied bioactivities like antitumor, antiviral, antibacterial, antifungal, antimalarial, antimycotics, antiproliferative, cytotoxicity, immunosuppressive agents and multi-drug resistance reversers. A number of techniques are now developed and standardized for the extraction, isolation, detection and purification of cyanobacterial bioactive molecules. Some of the compounds are showing interesting results and have successfully reached to phase II and phase III of clinical trials. These compounds also serve as lead compounds for the development of synthetic analogues with improved bioactivity. Cyanobacterial bioactive molecules hold a bright and promising future in scientific research and great opportunity for drug discovery. This review mainly focuses on anticancerous, antiviral and antibacterial compounds from cyanobacteria; their clinical status; extraction and detection techniques.


Bioactive molecules Anticancerous Antiviral Antimicrobial Clinical trials Extraction methods 



Authors are thankful to Director, CSIR-NBRI for all the facilities and constant encouragement. Rakhi Bajpai Dixit is grateful to Department of Science and Technology (DST, New Delhi), for providing financial assistance in the form of a project (Ref. No. SR/FT/LS-111/2010).


  1. Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235PubMedCrossRefGoogle Scholar
  2. Andrianasolo EH, Gross H, Goeger D, Musafija-Girt M, McPhail K, Leal RM, Mooberry SL, Gerwick WH (2005) Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org Lett 7:1375–1378PubMedCrossRefGoogle Scholar
  3. Antoine R, Broyer M, Chamot-Rooke J, Dedonder C, Desfrancois C, Dugourd P, Gregoire G, Jouvet C, Onidas D, Poulain P, Tabarin T, van der Rest G (2006) Comparison of the fragmentation pattern induced by collisions, laser excitation and electron capture. Influence of the initial excitation. Rapid Commun Mass Spectrom 20:1648–1652PubMedCrossRefGoogle Scholar
  4. Aráoz R, Guérineau V, Rippka R, Palibroda N, Herdman M, Laprevote O, von Döhren H, Tandeau de Marsac N, Erhard M (2008) MALDI-TOF-MS detection of the low molecular weight neurotoxins anatoxin-a and homoanatoxin-a on lyophilized and fresh filaments of axenic Oscillatoria strains. Toxicon 51:1308–1315PubMedCrossRefGoogle Scholar
  5. Asthana RK, Tripathi MK, Deepali A, Srivastava A, Singh AP, Singh SP, Nath G, Srivastava R, Srivastava BS (2009) Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. J Appl Phycol 21:81–88CrossRefGoogle Scholar
  6. Bajpai R, Sharma NK, Rai AK (2010) Anticancerous/antiviral compounds from cyanobacteria. Algas 43:4–6Google Scholar
  7. Barchi JJ, Moore RE, Patterson GML (1984) Acutiphycin and 20, 21-didehydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima. J Am Chem Soc 106:8193–8197CrossRefGoogle Scholar
  8. Barco M, Rivera J, Caixach J (2002) Analysis of cyanobacterial hepatotoxins in water samples by microbore reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. J Chromatogr A 959:103–111PubMedCrossRefGoogle Scholar
  9. Blokhin AV, Yoo H-D, Geralds RS, Nagle DG, Gerwick WH, Hamel E (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogs. Mol Pharmacol 48:523–531PubMedGoogle Scholar
  10. Blom JF, Brutsch T, Barbaras D, Bethuel Y, Locher HH, Hubschwerlen C, Gademann K (2006) Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org Lett 8:737–740PubMedCrossRefGoogle Scholar
  11. Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB, Patterson GML (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 47:7739–7750CrossRefGoogle Scholar
  12. Burja AM, Banaigs B, Abou-Mansour E, Burgess G, Wright PC (2001) Marine cyanobacteria: a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  13. Cardellina JH, Moore BS (2010) Editorial: Richard E Moore (1933–2007). J Nat Prod 73:301–302PubMedCrossRefGoogle Scholar
  14. Carmichael WW, Azevedo SMFO, Ji SA, Molica RJR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668PubMedCrossRefGoogle Scholar
  15. Catassi A, Cesario A, Arzani D, Menichini P, Alama A, Bruzzo C, Imperatori A, Rotolo N, Granone P, Russo P (2006) Characterization of apoptosis induced by marine natural products in non small cell lung cancer A549 cells. Cell Mol Life Sci 63:2377–2386PubMedCrossRefGoogle Scholar
  16. Chaganty S, Golakoti T, Heltzel C, Moore RE, Yoshida WY (2004) Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp. GSV 224. J Nat Prod 67:1403–1406PubMedCrossRefGoogle Scholar
  17. Chang TT, More SV, Lu IH, Hsu JC, Chen TJ, Jen YC, Lu CK, Li WS (2011) Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 46:3810–3819PubMedCrossRefGoogle Scholar
  18. Choi H, Pereira AR, Cao Z, Shuman CF, Engene N, Byrum T, Matainaho T, Murray TF, Mangoni A, Gerwick WH (2010) The hoiamides, structurally intriguing neurotoxic lipopeptides from Papua New Guinea marine cyanobacteria. J Nat Prod 73:1411–1421PubMedCrossRefGoogle Scholar
  19. Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water, a guide of their public health consequences, monitoring, and management. WHO E and FN Spoon LondonGoogle Scholar
  20. D’Agostino G, Del Campo J, Mellado B, Izquierdo MA, Minarik T, Cirri L, Marini L, Perez- Gracia JL, Scambia G (2006) A Multicenter phase ii study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int J Gynecol Cancer 16:71–76PubMedCrossRefGoogle Scholar
  21. Davies-Coleman M, Dzeha TM, Gray CA, Hess S, Pannell LK, Hendricks DT, Arendse CE (2003) Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66:712–715PubMedCrossRefGoogle Scholar
  22. Dey B, Lerner DL, Lusso P, Boyd MR, Elder JH, Berger EA (2000) Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 74:4562–4569PubMedCrossRefGoogle Scholar
  23. Edelman MJ, Gandara DR, Hausner P, Israel V, Thornton D, DeSanto J, Doyle LA (2003) Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 39:197–199PubMedCrossRefGoogle Scholar
  24. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833PubMedCrossRefGoogle Scholar
  25. Erhard M, von Döhren H, Jungblut P (1997) Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat Biotechnol 15:906–909PubMedCrossRefGoogle Scholar
  26. Esquenazi Eduardo, Dorrestein Pieter C, Gerwick William H (2009) Probing marine natural product defenses with DESI-imaging mass spectrometry. Proc Natl Acad Sci USA 106:7269–7270PubMedGoogle Scholar
  27. Fennell BJ, Carolan S, Pettit GR, Bell A (2003) Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. J Antimicrob Chemother 51:833–841PubMedCrossRefGoogle Scholar
  28. Ferranti P, Fabbrocino S, Nasi A, Caira S, Bruno M, Serpe L, Gallo P (2009) Liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry for microcystin analysis in freshwaters: method performances and characterisation of a novel variant of microcystin-RR. Rapid Commun Mass Spectrom 23:1328–1336PubMedCrossRefGoogle Scholar
  29. Fischera WJ, Altheimera S, Cattorib V, Meierb PJ, Dietricha DR, Hagenbuchb B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203:257–263CrossRefGoogle Scholar
  30. Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38:97–125PubMedCrossRefGoogle Scholar
  31. Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341CrossRefGoogle Scholar
  32. Gantar M, Dhandayuthapani S, Rathinavelu A (2012) Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. J Med Food 15:1091–1095PubMedCrossRefGoogle Scholar
  33. Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245CrossRefGoogle Scholar
  34. Gerwick WH, Coates RC, Engene N, Gerwick L, Grindberg RV, Jones AC, Sorrels CM (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3:277–284Google Scholar
  35. Golakoti T, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green-alga Nostoc sp. Strain GSV-224. J Am Chem Soc 116:4729–4737CrossRefGoogle Scholar
  36. Golakoti T, Ogino J, Heltzel CE, Lehusebo T, Jensen CM, Larsen LK, Patterson GML, Moore RE, Mooberry SL, Corbett TH, Valeriote FA (1995) Structure determination, conformational-analysis, chemical-stability studies, and antitumor evaluation of the cryptophycins: isolation of 18 new analogs from Nostoc sp. Strain GSV-224. J Am Chem Soc 117:12030–12049CrossRefGoogle Scholar
  37. Gunasekera SP, Ross C, Paul VJ, Matthew S, Luesch H (2008) Dragonamides C and D, linear lipopeptides from the marine cyanobacterium brown Lyngbya polychroa. J Nat Prod 71:887–890PubMedCrossRefGoogle Scholar
  38. Gunasekera SP, Owle CS, Montaser R, Luesch H, Paul VJ (2011) Malyngamide 3 and cocosamides A and B from the marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. J Nat Prod 74:871–876PubMedCrossRefGoogle Scholar
  39. Guo S, Tipparaju SK, Pegan SD, Wan B, Mo S, Orjala J, Mesecar AD, Franzblau SG, Kozikowski AP (2009) Natural product leads for drug discovery: isolation, synthesis and biological evaluation of 6-cyano-5-methoxyindolo[2,3-a]carbazole based ligands as antibacterial agents. Bioorg Med Chem 17:7126–7130PubMedCrossRefGoogle Scholar
  40. Gustafson KR, Cardellina JH, Fuller RW, Wieslow OS, Kiser RF, Sander KM, Patterson GM, Boyd MR (1989) AIDS antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 81:1254–1258PubMedCrossRefGoogle Scholar
  41. Gutierrez M, Suyama TL, Engene N, Wingerd JS, Matainaho T, Gerwick WH (2008) Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J Nat Prod 71:1099–1103PubMedCrossRefGoogle Scholar
  42. Gutiérrez RMP, Flores AM, Solis RV, Jimenez JC (2008) Two new antibacterial norbietane diterpenoids from cyanobacterium Micrococcus lacustris. J Nat Med 62:328–331CrossRefGoogle Scholar
  43. Han B, Goeger D, Maier CS, Gerwick WH (2005) The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J Org Chem 70:3133–3139PubMedCrossRefGoogle Scholar
  44. Han B, Gross H, Goeger DE, Mooberry SL, Gerwick WH (2006) Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 69:572–575PubMedCrossRefGoogle Scholar
  45. Harada K-I, Nakano T, Fujii K, Shirai M (2004) Comprehensive analysis system using liquid chromatography–mass spectrometry for the biosynthetic study of peptides produced by the cyanobacteria. J Chromatogr A 1033:107–113PubMedCrossRefGoogle Scholar
  46. Hayashi K, Hayashi T, Kojima IA (1996) Natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retroviruses 12:1463–1471PubMedCrossRefGoogle Scholar
  47. Hemscheidt T, Puglisi MP, Larsen LK, Patterson GML, Moore RE, Rios JL, Clardy J (1994) Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. J Org Chem 59:3467–3471CrossRefGoogle Scholar
  48. Hirata K, Yoshitomi S, Dwi S, Iwabe O, Mahakhant A, Polchai J, Miyamoto K (2003) Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95:512–517PubMedGoogle Scholar
  49. Horgen FD, Kazmierski EB, Westenburg HE, Yoshida WY, Scheuer PJ (2002) Malevamide D: isolation and structure determination of an isodolastatin H analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 65:487–491PubMedCrossRefGoogle Scholar
  50. Ira Bhatnagar, Kim S-K (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701CrossRefGoogle Scholar
  51. Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O (2000) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343PubMedCrossRefGoogle Scholar
  52. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130PubMedCrossRefGoogle Scholar
  53. Kalemkerian GP, Ou XL, Adil MR, Rosati R, Khoulani MM, Madan SK, Pettit GR (1999) Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemother Pharm 43:507–515CrossRefGoogle Scholar
  54. Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacteium, Nostoc flagilliforme. J Nat Prod 68:1037–1041PubMedCrossRefGoogle Scholar
  55. Kaushik P, Chauhan A (2008) In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian J Microbiol 48:348–352PubMedCrossRefGoogle Scholar
  56. Kondo F, Ikai Y, Oka H, Matsumoto H, Yamada S, Ishikawa N, Tsuji K, Harada K-I, Shimada T, Oshikata M, Suzuki M (1995) Reliable and sensitive method for determination of microcystins in complicated matrices by frit-fast atom bombardment liquid chromatography/mass spectrometry. Nat Toxins 3:41–49PubMedCrossRefGoogle Scholar
  57. Kwan JC, Rocca JR, Abboud KA, Paul VJ, Luesch H (2008) Total structure determination of grassypeptolide, a new marine cyanobacterial cytotoxin. Org Lett 10:789–792PubMedCrossRefGoogle Scholar
  58. Larsen LK, Moore RE, Patterson GML (1994) Beta-carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod 57:419–421PubMedCrossRefGoogle Scholar
  59. Li B, Chu X, Gao M, Li W (2010) Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin 42:80–89PubMedCrossRefGoogle Scholar
  60. Lindner P, Molz R, Yacoub-George E, Dürkop A, Wolf H (2004) Development of a highly sensitive inhibition immunoassay for microcystin-LR. Anal Chim Acta 521:37–44CrossRefGoogle Scholar
  61. Linington RG, Edwards DJ, Shuman CF, McPhail KL, Matainaho T, Gerwick WH (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71:22–27PubMedCrossRefGoogle Scholar
  62. Loya S, Reshef V, Mizrachi E, Silberstein C, Rachamim Y, Carmeli S, Hizi A (1998) The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: contribution of different moieties to their high potency. J Nat Prod 61:891–895PubMedCrossRefGoogle Scholar
  63. Luesch H, Yoshida WY, Moore RE, Paul VJ, Mooberry SL (2000) Isolation, structure determination, and biological activity of Lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 63:611–615PubMedCrossRefGoogle Scholar
  64. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001a) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910PubMedCrossRefGoogle Scholar
  65. Luesch H, Pangilinan R, Yoshida WY, Moore RE, Paul VJ (2001b) Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64:304–307PubMedCrossRefGoogle Scholar
  66. Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001c) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123:5418–5423PubMedCrossRefGoogle Scholar
  67. Luesch H, Yoshida WY, Moore RE, Paul VJ (2002a) New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg Med Chem 10:1973–1978PubMedCrossRefGoogle Scholar
  68. Luesch H, Yoshida WY, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2002b) Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J Nat Prod 65:16–20PubMedCrossRefGoogle Scholar
  69. Luescher-Mattli M (2003) Algae as a possible source of new antiviral agents. Curr Med Chem Anti-infect Agents 2:219–225CrossRefGoogle Scholar
  70. Ma LX, Led JJ (2000) Determination by high field NMR spectroscopy of the longitudinal electron relaxation rate in Cu (II) plastocyanin form Anabaena variabilis. Am Chem Soc 122:7823–7824CrossRefGoogle Scholar
  71. Magarvey NA, Beck ZQ, Golakoti T, Ding Y, Huber U, Hemscheidt TK, Abelson D, Moore RE, Sherman DH (2006) Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chem Biol 1:766–779PubMedCrossRefGoogle Scholar
  72. Mansour HA, Shoman SA, Kdodier MH (2011) Antiviral effect of edaphic cyanophytes on rabies and herpes-1 viruses. Acta Biol Hung 62:194–203PubMedCrossRefGoogle Scholar
  73. Márquez B, Verdier-Pinard P, Hamel E, Gerwick WH (1998) Curacin D, an antimitotic agent from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 49:2387–2389PubMedCrossRefGoogle Scholar
  74. Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71:1113–1116PubMedCrossRefGoogle Scholar
  75. McPhail KL, Correa J, Linington RG, González J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscule. J Nat Prod 70:984–988PubMedCrossRefGoogle Scholar
  76. Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI, Ortega-Barria E, Gerwick WH, McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325PubMedCrossRefGoogle Scholar
  77. Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibañez E, Señoráns FJ (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367CrossRefGoogle Scholar
  78. Miao S, Anderson RJ, Allen TM (1990) Cytotoxic metabolites from the sponge Ianthella basta collected in Papua New Guinea. J Nat Prod 53:1441–1446PubMedCrossRefGoogle Scholar
  79. Mita AC, Hammond LA, Bonate PL, Weiss G, McCreery H, Syed S, Garrison M, Chu QS, DeBono JS, Jones CB, Weitman S, Rowinsky EK (2006) Phase I and pharmacokinetic study of tasidotin hydrochloride (ILX651), a third-generation dolastatin-15 analogues, administered weekly for 3 weeks every 28 days in patients with advanced solid tumors. Clin Cancer Res 12:5207–5215PubMedCrossRefGoogle Scholar
  80. Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA (2007) Potent toxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATPB1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther 6:587–598PubMedCrossRefGoogle Scholar
  81. Moore RE, Corbett TH, Patterson GML, Valeriote FA (1996) The search for new antitumor drugs from blue green algae. Current Pharm Design 2:317–330Google Scholar
  82. Muir JC, Pattenden G, Ye T (2002) Total synthesis of (+)-curacin A, a novel antimitotic metabolite from a cyanobacterium. J Chem Soc Perkin Trans 1:2243–2250CrossRefGoogle Scholar
  83. Mulvenna V, Dale K, Priestly B, Mueller U, Humpage A, Shaw G, Allinson G, Ian Falconer (2012) Health risk assessment for cyanobacterial toxins in seafood. Int J Environ Res Public Health 9:807–820PubMedCrossRefGoogle Scholar
  84. Mynderse JS, Moore RE, Kashiwagi M, Norton TR (1977) Antileukemia activity in the Oscillatoriaceae: isolation of debromoaplysiatoxin from Lyngbya. Science 196:538–540PubMedCrossRefGoogle Scholar
  85. Nagatsu A, Kajitani H, Sakakibara J (1995) Muscoride A: a new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Lett 36:4097–4100CrossRefGoogle Scholar
  86. Nagle DG, Geralds RS, Yoo H, Gerwick WH (1995) Absolute configuration of curacin A, a novel antimitotic agent from the tropical marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett 36:1189–1192CrossRefGoogle Scholar
  87. Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787–793PubMedCrossRefGoogle Scholar
  88. Oberholster PJ, Botha A-M, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr J Biotechnol 3:159–168Google Scholar
  89. Oftedal L, Selheim F, Wahlsten M, Sivonen K, Døskeland SO, Herfindal L (2010) Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs 8:2659–2672PubMedCrossRefGoogle Scholar
  90. Oftedal L, Skjærven KH, Coyne RT, Edvardsen B, Rohrlack T, Skulberg OM, Døskeland SO, Herfindal L (2011) The apoptosis-inducing activity towards leukemia and lymphoma cells in a cyanobacterial culture collection is not associated with mouse bioassay toxicity. J Ind Microbiol Biotechnol 38:489–501PubMedCrossRefGoogle Scholar
  91. Onofrejová L, Vašíčková J, Klejdus B, Stratil P, Mišurcová L, Kráčmar S, Kopecký J, Vacek J (2010) Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal 51:464–470PubMedCrossRefGoogle Scholar
  92. Pelander A, Ojanperaè I, Lahti K, Niinivaara K, Vuori E (2000) Visual detection of cyanobacterial hepatotoxins by thin-layer chromatography and application to water analysis. Wat Res 34:2643–2652CrossRefGoogle Scholar
  93. Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB, Bontems RJ (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109:6883–6885CrossRefGoogle Scholar
  94. Pettit GR, Hogan F, Xu JP, Tan R, Nogawa T, Cichacz Z, Pettit RK, Du J, Ye QH, Cragg GM, Herald CL, Hoard MS, Goswami A, Searcy J, Tackett L, Doubek DL, Williams L, Hooper JN, Schmidt JM, Chapuis JC, Tackett DN, Craciunescu F (2008) Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms (1a,). J Nat Prod 71:438–444PubMedCrossRefGoogle Scholar
  95. Poste AE, Hecky RE, Guildford SJ (2011) Evaluating microcystin exposure risk through fish consumption. Environ Sci Technol 45:5806–5811PubMedCrossRefGoogle Scholar
  96. Prinsep MR, Caplan FR, Moore RE, Patterson GML, Smith CD (1992) Tolyphorin, a novel multidrug resistance reversing agent from the blue green algae Tolypothrix nodosa. J Am Chem Soc 114:385–387CrossRefGoogle Scholar
  97. Raveh A, Carmeli S (2007) Antimicrobial ambiguines from the cyanobacterium Fischerella sp collected in Israel. J Nat Prod 70:196–201PubMedCrossRefGoogle Scholar
  98. Rechter S, König T, Auerochs S, Thulke S, Walter H, Dörnenburg H, Walter C, Marschall M (2006) Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral Res 72:197–206PubMedCrossRefGoogle Scholar
  99. Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513–13520CrossRefGoogle Scholar
  100. Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E (2010) Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 8:629–657PubMedCrossRefGoogle Scholar
  101. Salvador LA, Paul VJ, Luesch H (2010) Caylobolide B, a macrolactone from symplostatin 1-producing marine cyanobacteria Phormidium spp. from Florida. J Nat Prod 73:1606–1609PubMedCrossRefGoogle Scholar
  102. Salvador LA, Biggs JS, Paul VJ, Luesch H (2011) Veraguamides A–G, cyclic hexa depsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf hydnoides from Guam. J Nat Prod 74:917–927PubMedCrossRefGoogle Scholar
  103. Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N (2010) Approaches for the synthesis of functionalized cryptophycins. J Org Chem 75:6953–6960PubMedCrossRefGoogle Scholar
  104. Schwartz RE, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromtling RE, Harris GH, Salvatore MJ, Liesch JM, Yudin K (1990) Pharmaceuticals from cultured algae. J Ind Microbiol 5:113–123CrossRefGoogle Scholar
  105. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287PubMedCrossRefGoogle Scholar
  106. Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342PubMedGoogle Scholar
  107. Singh S, Verma SK (2012) Application of direct analysis in real time mass spectrometry (DART-MS) for identification of an epiphytic cyanobacterium, Nostoc sp. Anal Lett 45:2562–2568CrossRefGoogle Scholar
  108. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95PubMedCrossRefGoogle Scholar
  109. Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401–412PubMedCrossRefGoogle Scholar
  110. Smith CD, Zhang X, Mooberry SL, Patterson GML, Moore RE (1994) Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. Cancer Res 54:3779–3784PubMedGoogle Scholar
  111. Spoof L, Vesterkvist P, Lindholm T, Meriluoto J (2003) Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. J Chromatogr A 1020:105–119PubMedCrossRefGoogle Scholar
  112. Stewart JB, Bomemann V, Chen JL, Moore RE, Caplan FR, Karuso H, Larsen LK, Patterson GM (1988) Cytotoxic, fungicidal nucleosides from blue-green algae belonging to the Scytonemataceae. J Antibiot 41:1048–1056PubMedCrossRefGoogle Scholar
  113. Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979PubMedCrossRefGoogle Scholar
  114. Tan LK (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676CrossRefGoogle Scholar
  115. Taniguchi M, Nunnery JK, Engene N, Esquenazi E, Byrum T, Dorrestein PC, Gerwick WH (2010) Palmyramide A, a cyclic depsipeptide from a Palmyra Atoll collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73:393–398PubMedCrossRefGoogle Scholar
  116. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807PubMedCrossRefGoogle Scholar
  117. Teruya T, Sasaki H, Fukazawa H, Suenaga K (2009a) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11:5062–5065PubMedCrossRefGoogle Scholar
  118. Teruya T, Sasaki H, Kitamura K, Nakayama T, Suenaga K (2009b) Biselyngbyaside, a macrolide glycoside from the marine cyanobacterium Lyngbya sp. Org Lett 11:2421–2424PubMedCrossRefGoogle Scholar
  119. Tidgewell K, Engene N, Byrum T, Media J, Doi T, Valeriote FA, Gerwick WH (2010) Evolved diversification of a modular natural product pathway: apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chem Bio Chem 11:1458–1466PubMedCrossRefGoogle Scholar
  120. Tokuda H, Nishino H, Shirahashi H, Murakami N, Nagatsu A, Sakakibara J (1996) Inhibition of 12-O-tetradecanoylphorbol-13-acetate promoted mouse skin papilloma by digalactosyl diacylglycerols from the fresh water cyanobacterium Phormidium tenue. Cancer Lett 104:91–95PubMedCrossRefGoogle Scholar
  121. Tripathi A, Puddick J, Prinsep MR, Rottmann M, Chan KP, Chen DY, Tan LT (2011) Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 72:2369–2375PubMedCrossRefGoogle Scholar
  122. Watanabe J, Minami M, Kobayashi M (2006) Antitumor activity of TZT-1027 (soblidotin). Anticancer Res 26:1973–1981PubMedGoogle Scholar
  123. Weiß C, Bogner T, Sammet B, Sewald N (2012) Total synthesis and biological evaluation of fluorinated cryptophycins. Beilstein J Org Chem 8:2060–2066PubMedCrossRefGoogle Scholar
  124. Welker M, Fastner J, Erhard M, von Döhren H (2002) Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17:367–374PubMedCrossRefGoogle Scholar
  125. Welker M, Brunke M, Preussel K, Lippert I, Döhren H (2004) Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150:1785–1796PubMedCrossRefGoogle Scholar
  126. Welker M, Maršálek B, Šejnohová L, von Döhren H (2006) Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27:2090–2103PubMedCrossRefGoogle Scholar
  127. White JD, Xu Q, Lee CS, Valeriote FA (2004) Total synthesis and biological evaluation of (+)-kalkitoxin, a cytotoxic metabolite of the cyanobacterium Lyngbya majuscula. Org Biomol Chem 2:2092–2102PubMedCrossRefGoogle Scholar
  128. Williams PG, Yoshida WY, Moore RE, Paul VJ (2002) Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 65:29–31PubMedCrossRefGoogle Scholar
  129. Williams PG, Yoshida WY, Moore RE, Paul VJ (2003a) The isolation and structure elucidation of tasiamide B, a 4-amino-3-hydroxy-5-phenylpentanoic acid containing peptide from the marine cyanobacterium Symploca sp. J Nat Prod 66:1006–1009PubMedCrossRefGoogle Scholar
  130. Williams PG, Yoshida WY, Moore RE, Paul VJ (2003b) Tasipeptins A and B: new cytotoxic depsipeptides from the marine cyanobacterium Symploca sp. J Nat Prod 66:620–624PubMedCrossRefGoogle Scholar
  131. Williams PG, Yoshida WY, Quon MK, Moore RE, Paul VJ (2003c) Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J Nat Prod 66:651–654PubMedCrossRefGoogle Scholar
  132. Wipf P, Reeves JT, Day BW (2004) Chemistry and biology of curacin A. Curr Pharm Des 10:1417–1437PubMedCrossRefGoogle Scholar
  133. Xiong C, O’Keefe BR, Byrd RA, McMohan JB (2006) Potent anti-HIV activity of scytovirin domain 1 peptide. Peptides 27:1668–1675PubMedCrossRefGoogle Scholar
  134. Xiong S, Fan J, Kitazato K (2010) The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 86:805–812PubMedCrossRefGoogle Scholar
  135. Yakoot M, Salem A (2012) Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterol 12:32PubMedCrossRefGoogle Scholar
  136. Yang H, Lee E, Kim H (1997) Spirulina platensis inhibits anaphylactic reaction. Life Sci 61:1237–1244PubMedCrossRefGoogle Scholar
  137. Yoo HD, Gerwick WH (1995) Curacins B and C, new antimitotic natural products from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 58:1961–1965CrossRefGoogle Scholar
  138. Zainuddin EN, Mentel R, Wray V, Jansen R, Nimtz M, Lalk M, Mundt S (2007) Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe. J Nat Prod 70:1084–1088PubMedCrossRefGoogle Scholar
  139. Zhang L, Ping X, Yang Z (2004) Determination of microcystin-LR in surface water using high-performance liquid chromatography/tandem electrospray ionization mass detector. Talanta 62:193–200Google Scholar
  140. Zheng W, Chen C, Cheng Q, Wang Y, Chu C (2006) Oral administration of exopolysaccharide from Aphanothece halophytica (chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. Int Immunopharmacol 6:1093–1099PubMedCrossRefGoogle Scholar
  141. Zou B, Long K, Ma DW (2005) Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palauamide. Org Lett 7:4237–4240PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Algology SectionCSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations