Advertisement

Antonie van Leeuwenhoek

, Volume 106, Issue 1, pp 85–125 | Cite as

Indole-3-acetic acid in plant–microbe interactions

  • Daiana Duca
  • Janet Lorv
  • Cheryl L. Patten
  • David Rose
  • Bernard R. Glick
Invited Review Antonie van Leeuwenhoek 80th Anniversary Issue

Abstract

Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant–microbe interactions including phytostimulation and phytopathogenesis.

Keywords

Indole-3-acetic acid (IAA) Phytohormone Plant growth promoting bacteria IAA biosynthesis IAA regulation 

References

  1. Abd-Alla MH, El-Sayed EA, Rasmey AM (2013) Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 3:B182–B193Google Scholar
  2. Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462PubMedGoogle Scholar
  3. Acuña J, Jorquera MA, Martínez O, Menezes-Blackburn D, Fernández MT, Marschner P, Greiner R, Mora M (2011) Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. J Soil Sci Plant Nutr 11:1–12Google Scholar
  4. Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34Google Scholar
  5. Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319Google Scholar
  6. Ahmed M, Stal LJ, Hasnain S (2010) Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9. J Microbiol Biotechnol 20:1259–1265PubMedGoogle Scholar
  7. Akbari GA, Arab SM, Alikhani HA, Allahdadi I, Arzanesh MH (2007) Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci 3:523–529Google Scholar
  8. Aldesuquy H, Mansour F, Abo-Hamed S (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol (Praha) 43:465–470Google Scholar
  9. Alemayehu D, Gordon L, O’Mahony M, O’Leary N, Dobson A (2004) Cloning and functional analysis by gene disruption of a novel gene involved in indigo production and fluoranthene metabolism in Pseudomonas alcaligenes PA-10. FEMS Microbiol Lett 239:285–293PubMedGoogle Scholar
  10. Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414PubMedGoogle Scholar
  11. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547PubMedGoogle Scholar
  12. Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26:1379–1384Google Scholar
  13. Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110:1235–1244PubMedGoogle Scholar
  14. Asano Y, Kato Y (1998) Z-phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1. FEMS Microbiol Lett 158:185–190Google Scholar
  15. Asano Y, Fujishiro K, Tani Y, Yamada H (1982a) Aliphatic nitrile hydratase from Arthrobacter sp. J-1 purification and characterization. Agric Biol Chem 46:1165–1174Google Scholar
  16. Asano Y, Tachibana M, Tani Y, Yamada H (1982b) Purification and characterization of amidase which participates in nitrile degradation. Agric Biol Chem 46:1175–1181Google Scholar
  17. Baca BE, Soto-Urzua L, Xochihua-Corona YG, Cuervo-Garcia A (1994) Characterization of two aromatic amino acid aminotransferases and production of indoleacetic acid in Azospirillum strains. Soil Biol Biochem 26:57–63Google Scholar
  18. Balaji N, Lavanya SS, Muthamizhselvi S, Tamilarasan K (2012) Optimization of fermentation conditions for indole acetic acid production by Pseudomonas species. Int J Adv Biotechnol Res 3:797–803Google Scholar
  19. Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Moenne-Loccoz Y (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161:219–226PubMedGoogle Scholar
  20. Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233Google Scholar
  21. Bhalla TC, Kumar H (2005) Nocardia globerula NHB-2: a versatile nitrile-degrading organism. Can J Microbiol 51:705–708PubMedGoogle Scholar
  22. Bharucha U, Kamlesh P (2013) Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric Res 2:215–221Google Scholar
  23. Bhattacharyya R (2006) Effects of heavy metals on growth and indole acetic acid production by Rhizobium sp. Bangladesh J Bot 35:63–69Google Scholar
  24. Bhowmick P, Basu P (1987) Indoleacetic acid production by Rhizobium sp. from a leguminous tree, Erythrina indica. Folia Microbiol (Praha) 32:142–148Google Scholar
  25. Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382PubMedGoogle Scholar
  26. Bianco C, Imperlini E, Defez R (2009) Legumes like more IAA. Plant Signal Behav 4:763–765PubMedCentralPubMedGoogle Scholar
  27. Blakey AJ, Colby J, Williams E, O’Reilly C (1995) Regio-and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol Lett 129:57–61Google Scholar
  28. Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078PubMedCentralPubMedGoogle Scholar
  29. Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359PubMedCentralPubMedGoogle Scholar
  30. Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128PubMedCentralPubMedGoogle Scholar
  31. Brandl MT, Clark EM, Lindow SE (1996) Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol 42:586–592Google Scholar
  32. Brandão PF, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766 Google Scholar
  33. Brummell DA, Lashbrook CC, Bennett AB (1994) Plant endo-1, 4-β-D-glucanases: structure, properties, and physiological function. ACS Symp Ser 566:100–129Google Scholar
  34. Cantarella M, Cantarella L, Gallifuoco A, Spera A (2006) Use of a UF-membrane reactor for controlling selectively the nitrile hydratase–amidase system in Microbacterium imperial CBS 498-74 resting cells: case study: benzonitrile conversion. Enzyme Microb Technol 38:126–134Google Scholar
  35. Carreño-Lopez R, Campos-Reales N, Elmerich C, Baca BE (2000) Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet 264:521–530PubMedGoogle Scholar
  36. Castro-Guerrero J, Romero A, Aguilar JJ, Xiqui ML, Sandoval JO, Baca BE (2012) The hisC1 gene, encoding aromatic amino acid aminotransferase-1 in Azospirillum brasilense Sp7, expressed in wheat. Plant Soil 356:139–150Google Scholar
  37. Catalá C, Rose JK, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534PubMedCentralPubMedGoogle Scholar
  38. Cernadas RA, Benedetti CE (2009) Role of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci 177(3):190–195Google Scholar
  39. Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62(1):173–181PubMedGoogle Scholar
  40. Chen R, Baluška F (2013) Polar auxin transport. Signal Commun Plants. 17:1–295Google Scholar
  41. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J et al (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136PubMedCentralPubMedGoogle Scholar
  42. Clark E, Manulis S, Ophir Y, Barash I, Gafni Y (1993) Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83:234–240Google Scholar
  43. Claus G, Kutzner HJ (1983) Degradation of indole by Alcaligenes sp. Syst Appl Microbiol 4:169–180PubMedGoogle Scholar
  44. Cleland R (1981) Wall extensibility: hormones and wall extension. In: Plant Carbohydrates II. Springer, pp 255–273Google Scholar
  45. Cleland RE (2010) Auxin and cell elongation. In: Plant Hormones. Springer, pp 204–220Google Scholar
  46. Coffey L, Owens E, Tambling K, O’Neill D, O’Connor L, O’Reilly C (2010) Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera. Antonie Van Leeuwenhoek 98:455–463PubMedGoogle Scholar
  47. Comai L, Kosuge T (1980) Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143:950–957PubMedCentralPubMedGoogle Scholar
  48. Comai L, Kosuge T (1982) Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol 149:40–46PubMedCentralPubMedGoogle Scholar
  49. Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470PubMedGoogle Scholar
  50. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861Google Scholar
  51. Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirilium brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463PubMedGoogle Scholar
  52. Costacurta A, Mazzafera P, Rosato YB (1998) Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 159:215–220Google Scholar
  53. Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127PubMedGoogle Scholar
  54. Davies PJ (1995) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer Academic, BostonGoogle Scholar
  55. De P, Basu P (1996) Growth behaviour and IAA production by a Rhizobium sp. isolated from root nodules of a leguminous medicinal herb, Tephrosea purpurea Pers., in culture. Microbiol Res 151:71–76Google Scholar
  56. Deslandes B, Gariépy C, Houde A (2001) Review of microbiological and biochemical effects of skatole on animal production. Livest Prod Sci 71:193–200Google Scholar
  57. Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25PubMedGoogle Scholar
  58. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410PubMedCentralPubMedGoogle Scholar
  59. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240PubMedCentralPubMedGoogle Scholar
  60. Donati AJ, Lee H, Leveau JH, Chang W (2013) Effects of Indole-3-Acetic Acid on the Transcriptional Activities and Stress Tolerance of Bradyrhizobium japonicum. PloS one 8:e76559 Google Scholar
  61. Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants?. Res MicrobiolGoogle Scholar
  62. Duan J (2012) Sequence Analysis of the genome of the plant growth-promoting bacterium Pseudomonas putida UW4. Dissertation. University of WaterlooGoogle Scholar
  63. Ebenau-Jehle C, Thomas M, Scharf G, Kockelkorn D, Knapp B, Schühle K, Heider J, Fuchs G (2012) Anaerobic metabolism of indoleacetate. J Bacteriol 194:2894–2903PubMedCentralPubMedGoogle Scholar
  64. Egebo L, Nielsen S, Jochimsen B (1991) Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 173:4897–4901PubMedCentralPubMedGoogle Scholar
  65. Egland PG, Harwood CS (1999) BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. J Bacteriol 181:2102–2109PubMedCentralPubMedGoogle Scholar
  66. Eklund DM, Thelander M, Landberg K, Ståldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ERA, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284PubMedGoogle Scholar
  67. El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertility Soils 28:377–381Google Scholar
  68. El-Mahrouk ME, Belal EBA (2007) Production of indole acetic acid (bioauxin) from Azotobacter sp. isolate and its effect on callus induction of Dieffenbachia maculata cv. Marianne. Acta Biologica Szegediensis 51:53–59Google Scholar
  69. El-Shanshoury AR (1991) Biosynthesis of indole-3-acetic acid in Streptomyces atroolivaceus and its changes during spore germination and mycelial growth. Microbios 67:159–164Google Scholar
  70. El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174Google Scholar
  71. Ernstsen A, Sandberg G, Crozier A, Wheeler C (1987) Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta 171:422–428PubMedGoogle Scholar
  72. Evans WC, Smith BS, Fernley HN, Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–551PubMedCentralPubMedGoogle Scholar
  73. Faure D, Vereecke D, Leveau JH (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303Google Scholar
  74. Fedorov DN, Doronina NV, Trotsenko YA (2010) Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry (Moscow) 75:1435–1443Google Scholar
  75. Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A et al (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 102:11064–11069PubMedCentralPubMedGoogle Scholar
  76. Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone D, De Lorenzo G (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681PubMedCentralPubMedGoogle Scholar
  77. Follin A, Inze D, Budar F (1985) Genetic evidence that the tryptophan 2-mono-oxygenase gene of Pseudomonas savastonoi is functionally equivalent to one of the T-DNA genes involved in plant tumour formation by Agrobacterium tumefaciens. Mol Gen Genet 201:178–185Google Scholar
  78. Frankenberger WT, Arshad M (1995) Auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils microbial production & function. Marcel Dekker Inc., New York, pp 17–136Google Scholar
  79. Fry S, Smith R, Renwick K, Martin D, Hodge S, Matthews K (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828PubMedCentralPubMedGoogle Scholar
  80. Fu J, Liu H, Li Y, Yu H, Li X, Xiao J et al (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602PubMedCentralPubMedGoogle Scholar
  81. Galán B, Kolb A, Sanz JM, García JL, Prieto MA (2003) Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res 31:6598–6609Google Scholar
  82. Ghosh AC, Basu PS (1997) Culture growth and IAa production by a microbial diazotropic symbiont of stem-nodules of the legume Aeschynomene aspera. Folia Microbiol 42:595–600Google Scholar
  83. Gieg LM, Otter A, Fedorak PM (1996) Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol 30:575–585Google Scholar
  84. Gilligan T, Yamada H, Nagasawa T (1993) Production of S-2-phenylpropionic acid from (R, S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Appl Microbiol Biotechnol 39:720–725PubMedGoogle Scholar
  85. Glass NL, Kosuge T (1988) Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi. J Bacteriol 170:2367–2373PubMedCentralPubMedGoogle Scholar
  86. Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant-Microbe Interact 11:156–162PubMedGoogle Scholar
  87. Gómez-Manzo S, Chavez-Pacheco J, Contreras-Zentella M, Sosa-Torres M, Arreguín-Espinosa R, de Pérez la Mora M, Membrillo-Hernández J, Escamilla J (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192:5718–5724PubMedCentralPubMedGoogle Scholar
  88. González-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development. Plant Cell Online 24:762–777Google Scholar
  89. Gopalakrishna KN, Stewart BH, Kneen MM, Andricopulo AD, Kenyon GL, McLeish MJ (2004) Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family. Biochemistry (NY) 43:7725–7735Google Scholar
  90. Gopalan S (2008) Reversal of an immunity associated plant cell death program by the growth regulator auxin. BMC Res Notes 1:126PubMedCentralPubMedGoogle Scholar
  91. Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manage Sci 66:113–120Google Scholar
  92. Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR (2009) Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 75:2253–2258PubMedCentralPubMedGoogle Scholar
  93. Halliday KJ, Martínez-García JF, Josse EM (2009) Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1:1–17Google Scholar
  94. Harari A, Kigel J, Okon Y (1988) Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil 110:275–282Google Scholar
  95. Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923Google Scholar
  96. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50(1):553–590PubMedGoogle Scholar
  97. He SY (1996) Elicitation of plant hypersensitive response by bacteria. Plant Physiol 112:865–869PubMedCentralPubMedGoogle Scholar
  98. Heinz EB, Streit WR (2003) Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation. Appl Environ Microbiol 69:1206–1213PubMedCentralPubMedGoogle Scholar
  99. Howden AJ, Preston GM (2009) Nitrilase enzymes and their role in plant–microbe interactions. Microb Biotechnol 2:441–451PubMedCentralPubMedGoogle Scholar
  100. Howden AJM, Rico A, Mentlak T, Miguet L, Preston GM (2009) Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid. Mol Plant Pathol 10:857–865PubMedGoogle Scholar
  101. Hsu S (2010) IAA production by Streptomyces scabies and its role in plant microbe interaction. Thesis Dissertation, Cornell University 1–54Google Scholar
  102. Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384PubMedCentralPubMedGoogle Scholar
  103. Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plantarum 76:31–36Google Scholar
  104. Ichige A, Walker GC (1997) Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 179:209–216PubMedCentralPubMedGoogle Scholar
  105. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626PubMedGoogle Scholar
  106. Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R (2009) Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol 83:727–738PubMedGoogle Scholar
  107. Jarabo-Lorenzo A, Perez-Galdona R, Vega-Hernandez M, Trujillo J, Leon-Barrios M (1998) Indole-3-acetic acid catabolism by bacteria belonging to the Bradyrhizobium genus. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, p 484Google Scholar
  108. Jensen JB, Egsgaard H, Van Onckelen H, Jochimsen BU (1995) Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177:5762–5766PubMedCentralPubMedGoogle Scholar
  109. Jeyanthi V (2013) Production optimization and characterization of phytohormone indole acetic acid by Pseudomonas fluorescence. Int J Pharm Biol Arch 4:514–520Google Scholar
  110. Johnson KD, Daniels D, Dowler MJ, Rayle DL (1974) Activation of Avena coleoptile cell wall glycosidases by hydrogen ions and auxin. Plant Physiol 53:224–228Google Scholar
  111. Joshi S, Ghosh I, Pokhrel S, Mädler L, Nau WM (2012) Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement. ACS Nano 6:5668–5679PubMedGoogle Scholar
  112. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PHE (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 19:91–95PubMedGoogle Scholar
  113. Kang B, Yang K, Cho B, Han T, Kim I, Lee M, Anderson A, Kim Y (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas Chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52:473–476PubMedGoogle Scholar
  114. Kaper JM, Veldstra H (1958) On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochim Biophys Acta 30:401–420PubMedGoogle Scholar
  115. Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of l-tryptophan and rice root exudates. J Plant Pathol 91:61–63Google Scholar
  116. Kato Y, Asano Y (2006) Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 70:92–101PubMedGoogle Scholar
  117. Kato Y, Tsuda T, Asano Y (1999) Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3-3. Eur J Biochem 263:662–670PubMedGoogle Scholar
  118. Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809PubMedGoogle Scholar
  119. Kato Y, Yoshida S, Xie S, Asano Y (2004) Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 97:250–259PubMedGoogle Scholar
  120. Kato Y, Yoshida S, Asano Y (2005) Polymerase chain reaction for identification of aldoxime dehydratase in aldoxime-or nitrile-degrading microorganisms. FEMS Microbiol Lett 246:243–249PubMedGoogle Scholar
  121. Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382PubMedGoogle Scholar
  122. Kemper E, Wafenschmidt S, Weiler EW, Rausch T, Schröder J (1985) T-DNA-encoded auxin formation in crown-gall cells. Planta 163:257–262PubMedGoogle Scholar
  123. Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsia J Biosci 4:23–32Google Scholar
  124. Kim S, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme Microb Technol 27:492–501PubMedGoogle Scholar
  125. Kim JI, Murphy AS, Baek D, Lee S, Yun D, Bressan RA, Narasimhan ML (2011a) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992PubMedCentralPubMedGoogle Scholar
  126. Kim YC, Leveau J, McSpadden GBB, Pierson EA, Pierson LS, Ryu CM (2011b) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555PubMedCentralPubMedGoogle Scholar
  127. Kittell BL, Helinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacteriol 171:5458–5466PubMedCentralPubMedGoogle Scholar
  128. Kitten T, Kinscherf TG, McEvoy JL, Willis DK (1998) A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 28:917–929PubMedGoogle Scholar
  129. Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 151:3639–3648PubMedGoogle Scholar
  130. Kobayashi M, Shimizu S (1994) Versatile nitrilases: nitrile-hydrolysing enzymes. FEMS Microbiol Lett 120:217–224Google Scholar
  131. Kobayashi M, Izui H, Nagasawa T, Yamada H (1993a) Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc Natl Acad Sci 90:247–251PubMedCentralPubMedGoogle Scholar
  132. Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S (1993b) Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Eur J Biochem 217:327–336PubMedGoogle Scholar
  133. Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92:714–718PubMedCentralPubMedGoogle Scholar
  134. Kochar M, Upadhyay A, Srivastava S (2011) Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens psd and plant growth regulation by hormone overexpression. Res Microbiol 162:426–435PubMedGoogle Scholar
  135. Koga J, Adachi T, Hidaka H (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter Cloacae. Mol Gen Genet 226:10–16PubMedGoogle Scholar
  136. Koga J, Syōono K, Ichikawa T, Adachi T (1994) Involvement of l-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae. Biochim Biophys acta Protein Struct Mol Enzymol 1209:241–247Google Scholar
  137. Komeda H, Hori Y, Kobayashi M, Shimizu S (1996a) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93:10572–10577PubMedCentralPubMedGoogle Scholar
  138. Komeda H, Kobayashi M, Shimizu S (1996b) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93:4267–4272PubMedCentralPubMedGoogle Scholar
  139. Komeda H, Kobayashi M, Shimizu S (1996c) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (l-NHase) induced by its reaction product. J Biol Chem 271:15796–15802PubMedGoogle Scholar
  140. Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124Google Scholar
  141. Kumar PR, Ram MR (2012) Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. P. Afr J Microbiol Res 6:5536–5541Google Scholar
  142. Kumavath RN, Ramana CV, Sasikala C (2010) l-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway. Biodegradation 21:825–832PubMedGoogle Scholar
  143. Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni Go, Azevedo V, Bertero M, Bessieres P, Bolotin A, Borchert S (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256PubMedGoogle Scholar
  144. Kurosawa N, Hirata T, Suzuki H (2009) Characterization of putative tryptophan monooxygenase from Ralstonia solanasearum. J Biochem 146:23–32PubMedGoogle Scholar
  145. Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300PubMedGoogle Scholar
  146. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146PubMedGoogle Scholar
  147. Layh N, Parratt J, Willetts A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Molec Catal B 5:467–474Google Scholar
  148. Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 89:895–905PubMedGoogle Scholar
  149. Leveau JHJ, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65:238–250PubMedGoogle Scholar
  150. Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371PubMedCentralPubMedGoogle Scholar
  151. Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217Google Scholar
  152. Lin G, Chen H, Huang J, Liu T, Lin T, Wang S, Tseng C, Shu H (2012) Identification and characterization of an indigo-producing oxygenase involved in indole 3-acetic acid utilization by Acinetobacter baumannii. Antonie Van Leeuwenhoek 101:881–890PubMedGoogle Scholar
  153. Lindahl R (1992) Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol 27:283–335PubMedGoogle Scholar
  154. Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103:4658–4662PubMedCentralPubMedGoogle Scholar
  155. Liu Z, Dong L, Cheng F, Xue Y, Wang Y, Ding J, Zheng Y, Shen Y (2011) Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. J Agric Food Chem 59:11560–11570PubMedGoogle Scholar
  156. Loper J, Schroth M (1986) Influence of bacterial sources of indole-3-acetic-acid on root elongation of sugar-beet. Phytopathology 76:386–389Google Scholar
  157. Malhotra M, Srivastava S (2008) An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 93:425–433Google Scholar
  158. Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80Google Scholar
  159. Mandal S, Mondal K, Dey S, Pati B (2007) Optimization of cultural and nutritional conditions for indole-3-acetic acid production by a Rhizobium sp. isolated from root nodules of Vigna mungo. Res J Microbiol 2:239–246Google Scholar
  160. Mandal G, Bhattacharya S, Ganguly T (2009) Nature of interactions of tryptophan with zinc oxide nanoparticles and l-aspartic acid: a spectroscopic approach. Chem Phys Lett 472:128–133Google Scholar
  161. Manulis S, Valinski L, Gafni Y, Hershenhorn J (1991) Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata. Physiol Mol Plant Pathol 39:161–171Google Scholar
  162. Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiol 140:1045–1050Google Scholar
  163. Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 11:634–642PubMedGoogle Scholar
  164. Masuda Y (1990) Auxin-induced cell elongation and cell wall changes. The botanical magazine. Shokubutsu-gaku-zasshi 103:345–370Google Scholar
  165. Masuda Y, Kamisaka S (2000) Discovery of auxin. Discov Plant Biol 3:43–49Google Scholar
  166. Matsukawa E, Nakagawa Y, Iimura Y, Hayakawa M (2007) Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. 日本放線菌学会誌 21:32–39Google Scholar
  167. Mayaux J, Cerebelaud E, Soubrier F, Faucher D, Petre D (1990) Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6773PubMedCentralPubMedGoogle Scholar
  168. Mazumder P, Ghosh S, Sadhu S, Maiti T (2010) Production of indole acetic acid by Rhizobium sp. from root nodules of a leguminous herb Crotalaria saltiana Andr. in CULTURE. J Pure Appl Microbiol 4:109–116Google Scholar
  169. Mazzola M, White FF (1994) A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176:1374–1382PubMedCentralPubMedGoogle Scholar
  170. McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:1–27Google Scholar
  171. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980PubMedGoogle Scholar
  172. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717PubMedGoogle Scholar
  173. Mino Y (1970) Studies on the destruction of indole-3-acetic acid by a species of Arthrobacter IV. decomposition products. Plant Cell Physiol 11:129–138Google Scholar
  174. Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13:638–649Google Scholar
  175. Monier J, Lindow S (2005) Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol 49:343–352PubMedGoogle Scholar
  176. Morgenstern E, Okon Y (1987) The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolor and Sorghum sudanense. Arid Soil Res Rehabil 1:115–127Google Scholar
  177. Morris RO (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37:509–538Google Scholar
  178. Mujahid M, Sasikala C, Ramana CV (2010) Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Curr Microbiol 61:285–290PubMedGoogle Scholar
  179. Mujahid M, Sasikala C, Ramana CV (2011) Production of indole-3-acetic acid and related indole derivatives from l-tryptophan by Rubrivivax benzoatilyticus JA2. Appl Microbiol Biotechnol 89:1001–1008PubMedGoogle Scholar
  180. Mutka AM, Fawley S, Tsao T, Kunkel BN (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid‐mediated defenses. Plant J 74:746–754Google Scholar
  181. Nagasawa T, Nakamura T, Yamada H (1990) ε-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Microbiol 155:13–17Google Scholar
  182. Nageshwar Y, Sheelu G, Shambhu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2011) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioprocess Biosyst Eng 34:515–523PubMedGoogle Scholar
  183. Narayana KJ, Peddikotla P, Krishna PSJ, Yenamandra V, Muvva V (2009) Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res 11:49–55Google Scholar
  184. Narumiya S, Takai K, Tokuyama T (1979) A new metabolic pathway of tryptophan initiated by tryptophan side chain oxidase. J Biol Chem 254:7007–7015PubMedGoogle Scholar
  185. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Sci 312:436–439Google Scholar
  186. Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T (1991) Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol 173:2465–2472PubMedCentralPubMedGoogle Scholar
  187. Oberhänsli T, Défago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137:2273–2279PubMedGoogle Scholar
  188. O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 87:221–232Google Scholar
  189. Omay SH, Schmidt WA, Martin P, Bangerth F (1993) Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense cd under in vitro conditions. Can J Microbiol 39:187–192Google Scholar
  190. Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132PubMedGoogle Scholar
  191. Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:1–15Google Scholar
  192. Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL (2013) Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology 159:1086–1096Google Scholar
  193. Park H, Kim H (2001) Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J Bacteriol 183:5074-5081Google Scholar
  194. Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM (2007) An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol 48:1236–1241PubMedGoogle Scholar
  195. Patek M, Knoppova M, Volkova O, Pavlik A, Kubac D, Nesvera J, Martinkova L (2009) Organization, regulation and expression of nitrile degradation genes of Rhodococcus erythropolis. New Biotechnol 25:S104Google Scholar
  196. Patil Nita B, Milind Gajbhiye, Ahiwale Sangita S, Gunjal Aparna B, Kapadnis Balasaheb P (2011) Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus Ll isolated from sugarcane. Int J Environ Sci 2:295–302Google Scholar
  197. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedGoogle Scholar
  198. Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642PubMedGoogle Scholar
  199. Patten CL, Blakney AJC, Coulson TJD (2012) Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 1–21Google Scholar
  200. Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett 233:15–21PubMedGoogle Scholar
  201. Perozich J, Nicholas H, Wang B, Lindahl R, Hempel J (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8:137–146PubMedCentralPubMedGoogle Scholar
  202. Phi Q, Park Y, Ryu C, Park S, Ghim S (2008) Functional identification and expression of indole-3-pyruvate decarboxylase from Paenibacillus polymyxa E681. J Microbiol Biotechnol 18:1235–1244PubMedGoogle Scholar
  203. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C et al (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566PubMedCentralPubMedGoogle Scholar
  204. Pilet P, Saugy M (1985) Effect of applied and endogenous indolyl-3-acetic acid on maize root growth. Planta 164:254–258PubMedGoogle Scholar
  205. Pilet PE, Elliott MC, Moloney MM (1979) Endogenous and exogenous auxin in the control of root growth. Planta 146:405–408PubMedGoogle Scholar
  206. Podar M, Eads JR, Richardson TH (2005) Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol 5:42PubMedCentralPubMedGoogle Scholar
  207. Pollmann S, Müller A, Weiler EW (2006) Many roads lead to “auxin”: of nitrilases, synthases, and amidases. Plant Biol 8:326–333PubMedGoogle Scholar
  208. Prasad S, Raj J, Bhalla T (2009) Purification of a hyperactive nitrile hydratase from resting cells of Rhodococcus rhodochrous PA-34. Indian J Microbiol 49:237–242PubMedCentralPubMedGoogle Scholar
  209. Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J, Van Onckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55PubMedGoogle Scholar
  210. Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1997) HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22Google Scholar
  211. Proctor MH (1958) Bacterial dissimilation of indoleacetic acid: a new route of breakdown of the indole nucleus. Nature 181:1345Google Scholar
  212. Providenti MA, Wyndham RC (2001) Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 67:3530–3541PubMedCentralPubMedGoogle Scholar
  213. Rajagopal R (1971) Metabolism of indole-3-acetaldehyde. III. Some characteristics of the aldehyde oxidase of Avena coleoptiles. Physiol Plant 24:272–281Google Scholar
  214. Rausch T, Minocha SC, Hilgenberg W, Kahl G (1985) l-Tryptophan metabolism in wound-activated and Agrobacterium tumefaciens-transformed potato tuber cells. Physiol Plant 63:335–344Google Scholar
  215. Reid AE, Kim SW, Seiner B, Fowler FW, Hooker J, Ferrieri R, Babst B, Fowler JS (2011) Radiosynthesis of C-11 labeled auxin (3-indolyl[1-11C]acetic acid) and its derivatives from gramine. J Labelled Compd Radiopharm 54:433–437Google Scholar
  216. Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL (2005) Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510PubMedCentralPubMedGoogle Scholar
  217. Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343PubMedGoogle Scholar
  218. Roper D, Fawcett T, Cooper R (1993) The Escherichia coli C homoprotocatechuate degradative operon: hpc gene order, direction of transcription and control of expression. Mol Gen Genet MGG 237:241-250Google Scholar
  219. Roy M, Basu P (1989) Production of 3-indoleacetic acid by a Rhizobium sp. from Mimosa pudica. Folia Microbiológica 34:120–126Google Scholar
  220. Ruckdäschel E, Kittell BL, Helinski D, Klingmüller U (1988) Aromatic amino acid aminotransferases of Azospirillum lipoferum and their possible involvement in IAA biosynthesis. In: Azospirillum IV. Springer, pp 49–53Google Scholar
  221. Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrR in Enterobacter cloacae UW5. Bacteriology 190:7200–7208Google Scholar
  222. Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol 85:1417–1425PubMedGoogle Scholar
  223. Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993PubMedGoogle Scholar
  224. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus J, Cattolico L (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502PubMedGoogle Scholar
  225. Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705PubMedGoogle Scholar
  226. Sasirekha B, Shivakumar S (2012) Statistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotion. J Soil Sci Plant Nutr 12:863–873Google Scholar
  227. Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci 100:10552–10557PubMedCentralPubMedGoogle Scholar
  228. Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391PubMedGoogle Scholar
  229. Schütz A, Golbik R, Tittmann K, Svergun DI, Koch MHJ, Hübner G, Konig S (2003a) Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur J Biochem 270:2322–2331Google Scholar
  230. Schütz A, Sandalova T, Ricagno S, Hübner G, König S, Schneider G (2003b) Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur J Biochem 270:2312–2321Google Scholar
  231. Scott JC, Greenhut IV, Leveau JH (2013) Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 39:942–951PubMedGoogle Scholar
  232. Sekine M, Ichikawa T, Kuga N, Kobayashi M, Sakurai A, Syōno K (1988) Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol 29:867–874Google Scholar
  233. Sekine M, Watanabe K, Syono K (1989) Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. J Bacteriol 171:1718–1724PubMedCentralPubMedGoogle Scholar
  234. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238PubMedGoogle Scholar
  235. Sergeeva E, Hirkala DLM, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13Google Scholar
  236. Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr Microbiol 61:217–225PubMedGoogle Scholar
  237. Sitbon F, Sundberg B, Olsson O, Sandberg G (1991) Free and conjugated indoleacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95:480–485PubMedCentralPubMedGoogle Scholar
  238. Sitbon F, Hennion S, Sundberg B, Anthony Little CH, Olsson O, Sandberg G (1992) Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99:1062–1069PubMedCentralPubMedGoogle Scholar
  239. Smidt M, Kosuge T (1978) The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol 13:203–213Google Scholar
  240. Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E et al (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51:524–536PubMedGoogle Scholar
  241. Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810PubMedCentralPubMedGoogle Scholar
  242. Song L, Yuan H, Coffey L, Doran J, Wang M, Qian S, O’Reilly C (2008) Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 30:755–762PubMedGoogle Scholar
  243. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedGoogle Scholar
  244. Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148PubMedCentralPubMedGoogle Scholar
  245. Sridevi M, Yadav N, Mallaiah K (2008) Production of indole-acetic-acid by Rhizobium isolates from Crotalaria species. Res J Microbiol 3:276–281Google Scholar
  246. Stolz A, Trott S, Binder M, Bauer R, Hirrlinger B, Layh N, Knackmuss H (1998) Enantioselective nitrile hydratases and amidases from different bacterial isolates. J Molec Catal B 5:137–141Google Scholar
  247. Sudha M, Gowri RS, Prabhavathi P, Astapriya P, Devi SY, Saranya A (2012) Production and optimization of indole acetic acid by indigenous micro flora using agro waste as substrate. Pak J Biol Sci 15:39–43PubMedGoogle Scholar
  248. Sunkar R, Li Y, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203PubMedGoogle Scholar
  249. Surico G, Iacobellis NS, Sisto A (1985) Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. Physiol Plant Pathol 26:309–320Google Scholar
  250. Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143PubMedGoogle Scholar
  251. Swain M, Ray R (2008) Optimization of cultural conditions and their statistical interpretation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J Sci Ind Res 67:622–628Google Scholar
  252. Taiz L, Zeiger E (1991) Plant physiology. Benjamin Cummings Inc., San FranciscoGoogle Scholar
  253. Tao Y, Ferrer J, Ljung K, Pojer F, Hong F, Long JA, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel J, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176PubMedCentralPubMedGoogle Scholar
  254. Tauber M, Cavaco-Paulo A, Robra K, Gübitz GM (2000) Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Appl Environ Microbiol 66:1634–1638PubMedCentralPubMedGoogle Scholar
  255. Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 17:1153–1161PubMedGoogle Scholar
  256. Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci 81:5071–5075PubMedCentralPubMedGoogle Scholar
  257. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra M (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171PubMedCentralPubMedGoogle Scholar
  258. Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333:297–306PubMedGoogle Scholar
  259. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286PubMedCentralPubMedGoogle Scholar
  260. Van Onckelen H, Els P, Inzé D, Rüdeisheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360Google Scholar
  261. Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J et al (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61:723–728PubMedGoogle Scholar
  262. Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342PubMedCentralPubMedGoogle Scholar
  263. Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant-Microbe Interact 18:311–323PubMedGoogle Scholar
  264. Vandeputte O, Öden S, Mol A, Vereecke D, Goethals K, Jaziri ME, Prinsen E (2005) Biosynthesis of auxin by the Gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177PubMedCentralPubMedGoogle Scholar
  265. Vega-Hernández MC, León-Barrios M, Pérez-Galdona R (2002) Indole-3-acetic acid production from indole-3-acetonitrile in Bradyrhizobium. Soil Biol Biochem 34:665–668Google Scholar
  266. Walpola BC, Noh J, Kim CK, Kyung K, Kong W, Yoon M (2013) Optimization of indole-3-acetic acid by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus. J Mushroom Sci Prod 11:53–62Google Scholar
  267. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790PubMedGoogle Scholar
  268. Wang H, Sun H, Wei D (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14PubMedCentralPubMedGoogle Scholar
  269. Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σ(s) and the stress response in Pseudomonas fluorescens pf-5. J Bacteriol 180:6635–6641PubMedCentralPubMedGoogle Scholar
  270. Xie S, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066PubMedGoogle Scholar
  271. Xie B, Xu K, Zhao HX, Chen SF (2005) Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol Lett 248:57–63PubMedGoogle Scholar
  272. Yagi K, Chujo T, Nojiri H, Omori T, Nishiyama M, Yamane H (2001) Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum FS. Biosci Biotechnol Biochem 65:1265–1269PubMedGoogle Scholar
  273. Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad USA 82:6522–6526Google Scholar
  274. Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM et al (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088PubMedCentralPubMedGoogle Scholar
  275. Yokoyama MT, Carlson JR (1981) Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol 41:71–76PubMedCentralPubMedGoogle Scholar
  276. Yoshida A, Rzhetsky A, Hsu LC, Chang C (1998) Human aldehyde dehydrogenase gene family. Eur J Biochem 25:549–557Google Scholar
  277. Yuan Z, Haudecoeur E, Faure D, Kerr KF, Nester EW (2008) Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and γ-amino butyric acid reveals signalling cross-talk and Agrobacterium–plant co-evolution. Cell Microbiol 10:2339–2354PubMedGoogle Scholar
  278. Zaghian S, Shokri D, Emtiazi G (2012) Co-production of a UV-stable bacteriocin-like inhibitory substance (BLIS) and indole-3-acetic acid hormone (IAA) and their optimization by Taguchi design in Bacillus pumilus. Ann Microbiol 62:1189–1197Google Scholar
  279. Zhang J, Wang M, Sun H, Li X, Zhong L (2009) Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. Afr J Biotechnol 8:5467–5475Google Scholar
  280. Zhang Z, Xu J, He Y, Ouyang L, Liu Y (2011) Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-mandelic acid production. Bioprocess Biosyst Eng 34:315–322PubMedGoogle Scholar
  281. Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338PubMedCentralPubMedGoogle Scholar
  282. Zhao M, Han Y, Feng Y, Li F, Wang W (2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep 31:671–685PubMedGoogle Scholar
  283. Zheng Y, Chen J, Liu Z, Wu M, Xing L, Shen Y (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993PubMedGoogle Scholar
  284. Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol 129:645–650PubMedGoogle Scholar
  285. Zimmer W, Bothe H (1988) The phytohormonal interactions between Azospirillum and wheat. Plant Soil 110:239–247Google Scholar
  286. Zimmer W, Hundeshagen B, Niederau E (1994) Demonstration of the indolepyruvate decarboxylase gene homologue in different auxin-producing species of the Enterobacteriaceae. Can J Microbiol 40:1072–1076PubMedGoogle Scholar
  287. Zimmer W, Wesche M, Timmermans L (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36:327–331PubMedGoogle Scholar
  288. Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daiana Duca
    • 1
  • Janet Lorv
    • 1
  • Cheryl L. Patten
    • 2
  • David Rose
    • 1
  • Bernard R. Glick
    • 1
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada
  2. 2.Department of BiologyUniversity of New BrunswickFrederictonCanada

Personalised recommendations