Advertisement

Antonie van Leeuwenhoek

, Volume 105, Issue 2, pp 289–305 | Cite as

Bacterial quorum sensing: circuits and applications

  • Neera Garg
  • Geetanjali Manchanda
  • Aditya Kumar
Review Paper

Abstract

Bacterial quorum sensing (QS) systems are cell density—dependent regulatory networks that coordinate bacterial behavioural changes from single cellular organisms at low cell densities to multicellular types when their population density reaches a threshold level. At this stage, bacteria produce and perceive small diffusible signal molecules, termed autoinducers in order to mediate gene expression. This often results in phenotypic shifts, like planktonic to biofilm or non-virulent to virulent. In this way, they regulate varied physiological processes by adjusting gene expression in concert with their population size. In this review we give a synopsis of QS mediated cell–cell communication in bacteria. The first part focuses on QS circuits of some Gram-negative and Gram-positive bacteria. Thereafter, attention is drawn on the recent applications of QS in development of synthetic biology modules, for studying the principles of pattern formation, engineering bi-directional communication system and building artificial communication networks. Further, the role of QS in solving the problem of biofouling is also discussed.

Keywords

Autoinducers Bacteria Biofouling Quorum sensing Synthetic biology 

Notes

Acknowledgments

Authors thankfully acknowledge the financial support provided by Department of Science and Technology, India.

References

  1. Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102. doi: 10.1016/S0048-9697(00)00510-6 PubMedGoogle Scholar
  2. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627. doi: 10.1016/j.jmb.2005.10.076 PubMedGoogle Scholar
  3. Antunes LCM, Ferreira RBR (2009) Intercellular communication in bacteria. Crit Rev Microbiol 35:69–80. doi: 10.1080/10408410902733946 PubMedGoogle Scholar
  4. Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282. doi: 10.1099/mic.0.038794-0 PubMedGoogle Scholar
  5. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol 4:187. doi: 10.1038/msb.2008.24 PubMedCentralPubMedGoogle Scholar
  6. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246. doi: 10.1016/j.cell.2006.04.001 PubMedGoogle Scholar
  7. Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R (2004) Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci USA 101:6355–6360. doi: 10.1073/pnas.0307571101 PubMedGoogle Scholar
  8. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134. doi: 10.1038/nature03461 PubMedGoogle Scholar
  9. Bellas J (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci Total Environ 367:573–585. doi: 10.1016/j.scitotenv.2006.01.028 PubMedGoogle Scholar
  10. Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502. doi: 10.1128/AEM.70.9.5493-5502.2004 PubMedCentralPubMedGoogle Scholar
  11. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578. doi: 10.1007/s00425-004-1307-5 PubMedGoogle Scholar
  12. Bjarnsholt T, Givskov M (2007) Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362:1213–1222. doi: 10.1098/rstb2007.2046 PubMedGoogle Scholar
  13. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179. doi: 10.1128/AEM.67.7.3174-3179.2001 PubMedCentralPubMedGoogle Scholar
  14. Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci 104:17300–17304. doi: 10.1073/pnas.0704256104 PubMedGoogle Scholar
  15. Bulter T, Lee SG, Wong WW, Fung E, Connor MR, Liao JC (2004) Design of artificial cell–cell communication using gene and metabolic networks. Proc Natl Acad Sci USA 101:2299–2304. doi: 10.1073/pnas.0306484101 PubMedGoogle Scholar
  16. Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197–205. doi: 10.1080/0892701031000061778 PubMedGoogle Scholar
  17. Callahan SM, Dunlap PV (2000) LuxR- and acylhomoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J Bacteriol 182:2811–2822. doi: 10.1128/JB.182.10.2811-2822.2000 PubMedCentralPubMedGoogle Scholar
  18. Callow ME (2000) Algal biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publications, Amsterdam, pp 189–209Google Scholar
  19. Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49:10–14PubMedGoogle Scholar
  20. Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J Phycol 33:938–947. doi: 10.1111/j.0022-3646.1997.00938.x Google Scholar
  21. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652. doi: 10.1016/j.surfcoat.2006.08.129 Google Scholar
  22. Chen C-N, Chen C-J, Liao C-T, Lee C-Y (2009) A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 9:89. doi: 10.1186/1471-2180-9-89 PubMedCentralPubMedGoogle Scholar
  23. Chin AWTF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979. doi: 10.1094/MPMI.2001.14.8.969 Google Scholar
  24. Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253. doi: 10.1094/MPMI-18-0244 Google Scholar
  25. Chiovitti A, Bacic A, Burke J, Wetherbee R (2003) Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostauros australis (Bacillariophyceae). Eur J Phycol 38:351–360. doi: 10.1080/09670260310001612637 Google Scholar
  26. Coggan KA, Wolfgang MC (2012) Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol 14:47–70PubMedGoogle Scholar
  27. Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326–330. doi: 10.1038/nature08753 PubMedCentralPubMedGoogle Scholar
  28. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849. doi: 10.1128/IAI.68.9.4839-4849.2000 PubMedCentralPubMedGoogle Scholar
  29. de Nys R, Glvskow M, Kjelleberg S, Steinberg PD (2006) Furanones. Prog Mol Subcell Biol 42:55–86PubMedGoogle Scholar
  30. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273. doi: 10.1016/S0278-4343(00)00022-4 Google Scholar
  31. Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, Norman RS, Reid RP (2009) Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ Microbiol 11:409–420. doi: 10.1111/j.1462-2920.2008.01780.x Google Scholar
  32. Dessaux Y, Chapelle E, Faure D (2011) Biocommunication in soil microorganisms. In: Witzany G (ed) Soil biology, quorum sensing and quorum quenching in soil ecosystems. Springer, Berlin, pp 339–367Google Scholar
  33. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344. doi: 10.1073/pnas.0307694100 PubMedGoogle Scholar
  34. Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M, Xiao G, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-l-homoserine lactones. Mol Microbiol 55:998–1014. doi: 10.1111/j.1365-2958.2004.04448.x PubMedGoogle Scholar
  35. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43. doi: 10.1046/j.1365-2958.2003.03672.x PubMedGoogle Scholar
  36. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96. doi: 10.1016/j.chembiol.2006.11.014 PubMedGoogle Scholar
  37. Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54. doi: 10.1080/08927010500504784 PubMedGoogle Scholar
  38. Dobretsov S, Dahms HU, Yili H, Wahl M, Qian PY (2007) The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol 60:177–188. doi: 10.1111/j.1574-6941.2007.00285.x PubMedGoogle Scholar
  39. Dobretsov S, Teplitski M, Paul V (2009) Quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427. doi: 10.1080/08927010902853516 PubMedGoogle Scholar
  40. Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ (2011) Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27:893–905. doi: 10.1080/08927014.2011.609616 PubMedCentralPubMedGoogle Scholar
  41. Dobretsov S, Abed RMM, Voolstra CR (2013) The effect of surface colour on the formation of marine micro- and macro-fouling communities. Biofouling 29:617–627. doi: 10.1080/08927014.2013.776042 PubMedGoogle Scholar
  42. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  43. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531. doi: 10.1073/pnas.97.7.3526 PubMedGoogle Scholar
  44. Dong Y-H, Gusti AR, Zhang Q, Xu J-L, Zhang L-H (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759. doi: 10.1128/AEM.68.4.1754-1759.2002 PubMedCentralPubMedGoogle Scholar
  45. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170. doi: 10.1111/j.1574-6976.2009.00205.x PubMedGoogle Scholar
  46. Downie JA, Gonzalez JE (2008) Cell-to-cell communication in rhizobia: quorum sensing and plant signalling. In: Winas SC, Bassler B (eds) Chemical communication among bacteria. ASM Press, Washington, DC, pp 213–232Google Scholar
  47. Dubnau D, Lovett CMJ (2002) Transformation and recombination. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, DC, pp 453–471Google Scholar
  48. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353. doi: 10.1128/JB.183.24.7341-7353.2001 PubMedCentralPubMedGoogle Scholar
  49. Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA (2009) The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. J Bacteriol 191:3059–3067. doi: 10.1128/JB.01650-08 PubMedCentralPubMedGoogle Scholar
  50. El-Sayed AK, Hothersall J, Thomas CM (2001) Quorum sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139PubMedGoogle Scholar
  51. Endy D (2005) Foundations for engineering biology. Nature 438:449–453. doi: 10.1038/nature04342 PubMedGoogle Scholar
  52. Feng L, Wu Z, Yu X (2013) Quorum sensing in water and wastewater treatment biofilms. J Environ Biol 34:437–444Google Scholar
  53. Frederix M, Edwards A, McAnulla C, Downie JA (2011) Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor. Mol Microbiol 81:994–1007. doi: 10.1111/j.1365-2958.2011.07738.x PubMedGoogle Scholar
  54. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acylhomoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695. doi: 10.1038/nrm907 PubMedGoogle Scholar
  55. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468. doi: 10.1146/annurev.genet.35.102401.090913 PubMedGoogle Scholar
  56. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400–410. doi: 10.1039/C0NP00034E PubMedGoogle Scholar
  57. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342. doi: 10.1038/35002131 PubMedGoogle Scholar
  58. George EA, Muir TW (2007) Molecular mechanisms of agr quorum sensing in virulent staphylococci. ChemBioChem 8:847–855. doi: 10.1002/cbic.200700023 PubMedGoogle Scholar
  59. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedCentralPubMedGoogle Scholar
  60. Glenn SA, Gurich N, Feeney MA, Gonzalez JE (2007) The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. J Bacteriol 189:7077–7088. doi: 10.1128/JB.00906-07 PubMedCentralPubMedGoogle Scholar
  61. Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682. doi: 10.1080/08927014.2013.796939 PubMedGoogle Scholar
  62. González JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592. doi: 10.1128/MMBR.67.4.574-592.2003 PubMedCentralPubMedGoogle Scholar
  63. Gray KM, Passador L, Iglewski BH, Greenberg EP (1994) Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol 176:3076–3080PubMedCentralPubMedGoogle Scholar
  64. Hanzelka BL, Greenberg EP (1995) Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J Bacteriol 177:815–817PubMedCentralPubMedGoogle Scholar
  65. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Walland RJ (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294. doi: 10.1080/1364253031000136321 Google Scholar
  66. Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedGoogle Scholar
  67. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  68. Hoang HH, Becker A, Gonzalez JE (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186:5460–5472. doi: 10.1128/JB.186.16.5460-5472.2004 PubMedCentralPubMedGoogle Scholar
  69. Hodgkinson J, Bowden SD, Galloway WRJD, Spring DR, Welch M (2010) Structure–activity analysis of the Pseudomonas quinolone signal molecule. J Bacteriol 192:3833–3837. doi: 10.1128/JB.00081-10 PubMedCentralPubMedGoogle Scholar
  70. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949PubMedCentralPubMedGoogle Scholar
  71. Hunt LR, Smith SM, Downum KR, Mydlarz LD (2012) Microbial regulation in gorgonian corals. Mar Drugs 10:1225–1243. doi: 10.3390/md10061225 Google Scholar
  72. International Maritime Organization (2001) International convention on the control of harmful anti-fouling systems on ships. http://www.imo.org/about/conventions/listofconventions/pages/international-convention-on-the-control-of-harmful-anti-fouling-systems-on-ships-(afs).aspx. Accessed 27 July 2013
  73. Janczarek M (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in Rhizobia. Int J Mol Sci 12:7898–7933. doi: 10.3390/ijms12117898 PubMedCentralPubMedGoogle Scholar
  74. Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167. doi: 10.1146/annurev.bioeng.10.061807.160536 PubMedGoogle Scholar
  75. Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macroalga: separation of the compound that interrupts bacterial communication. Marine Drugs 11:253–265. doi: 10.3390/md11010253 PubMedCentralPubMedGoogle Scholar
  76. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477–2482Google Scholar
  77. Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471. doi: 10.1111/j.1462-2920.2005.00769.x PubMedGoogle Scholar
  78. Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacterial material interactions. Eur Cell Mater 8:37–57PubMedGoogle Scholar
  79. Kim J, Kang Y, Choi O, Jeong Y, Jeong J-E, Lim JY, Kim M, Moon JS, Suga H, Hwang I (2007) Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol Microbiol 64:165–179. doi: 10.1111/j.1365-2958.2007.05646.x PubMedGoogle Scholar
  80. Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M, De Nys R (2001) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13:85–93Google Scholar
  81. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci USA 101:8414–8419. doi: 10.1073/pnas.0402940101 PubMedGoogle Scholar
  82. Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. doi: 10.1016/S0160-4120(03)00176-4 PubMedGoogle Scholar
  83. Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481. doi: 10.1016/j.biotechadv.2008.05.005 PubMedGoogle Scholar
  84. Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H (2011) Lyngbyoic acid, a “tagged” fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Mol BioSyst 7:1205–1216. doi: 10.1039/c0mb00180e PubMedCentralPubMedGoogle Scholar
  85. Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cistetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480PubMedGoogle Scholar
  86. Laus MC, van Brussel AA, Kijne JW (2005) Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs. Mol Plant Microbe Interact 18:533–538. doi: 10.1094/MPMI-18-0533 PubMedGoogle Scholar
  87. Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signalling. Trends Microbiol 6:288–294. doi: 10.1016/S0966-842X(98)01313-4 PubMedGoogle Scholar
  88. Leadbetter JR (2001) News and views: plant microbiology—quieting the raucous crowd. Nature 411:748–749PubMedGoogle Scholar
  89. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926PubMedCentralPubMedGoogle Scholar
  90. Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913. doi: 10.1093/molbev/msh097 PubMedGoogle Scholar
  91. Li H, Zhou S, Ma W, Huang G, Xu B (2012) Fast start-up of ANAMMOX reactor: operational strategy and some characteristics as indicators of reactor performance. Desalination 286:436–441. doi: 10.1016/j.desal.2011.11.038 Google Scholar
  92. Lupp C, Urbanowski M, Greenberg EP, Ruby EG (2003) The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol Microbiol 50:319–331. doi: 10.1046/j.1365-2958.2003.t01-1-03585.x PubMedGoogle Scholar
  93. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg PD, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserinelactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291PubMedGoogle Scholar
  94. Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S (2000) Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079–2084Google Scholar
  95. Marchisio MA, Rudolf F (2011) Synthetic biosensing systems. Int J Biochem Cell Biol 43:310–319. doi: 10.1016/j.biocel.2010.11.012 PubMedGoogle Scholar
  96. Marketon MM, Gronquist MR, Eberhard A, González JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695. doi: 10.1128/JB.184.20.5686-5695.2002 PubMedCentralPubMedGoogle Scholar
  97. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938. doi: 10.1128/MMBR.00020-06 PubMedCentralPubMedGoogle Scholar
  98. McGowan SJ, Sebaihia M, Porter LE, Stewart GS, Williams P, Bycroft BW, Salmond GP (1996) Analysis of bacterial carbapenem antibiotic production genes reveals a novel beta-lactam biosynthesis pathway. Mol Microbiol 22:415–426PubMedGoogle Scholar
  99. McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708. doi: 10.1128/JB.182.10.2702-2708.2000 PubMedCentralPubMedGoogle Scholar
  100. Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84:795–806. doi: 10.1111/j.1365-2958.2012.08065.x PubMedCentralPubMedGoogle Scholar
  101. Molino PJ, Wetherbee R (2008) Mini-review: the biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling 24:365–379. doi: 10.1080/08927010802254583 PubMedGoogle Scholar
  102. Myszka K, Czaczyk K (2012) N-Acylhomoserine lactones (AHLs) as phenotype control factors produced by gram-negative bacteria in natural ecosystems. Polish J Environ Stud 21:15–21Google Scholar
  103. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57. doi: 10.1016/j.aquaculture.2011.04.038 Google Scholar
  104. Nealson KH, Platt T, Hastings JW (1970) Cellular control of synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedCentralPubMedGoogle Scholar
  105. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi: 10.1146/annurev-genet-102108-134304 PubMedGoogle Scholar
  106. Ng WL, Perez LJ, Wei Y, Kraml C, Semmelhack MF, Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol 79:1407–1417. doi: 10.1111/j.1365-2958.2011.07548.x PubMedCentralPubMedGoogle Scholar
  107. Ng WL, Perez L, Cong J, Semmelhack MF, Bassler BL (2012) Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios. PLoS Pathog 8:e1002767. doi: 10.1371/journal.ppat.1002767 PubMedCentralPubMedGoogle Scholar
  108. Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124. doi: 10.1002/med.20145 PubMedGoogle Scholar
  109. Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors 12:2851–2873. doi: 10.3390/s120302851 PubMedGoogle Scholar
  110. Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538. doi: 10.1128/JB.01660-07 PubMedCentralPubMedGoogle Scholar
  111. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. doi: 10.1146/annurev.genet.42.110807.091640 PubMedGoogle Scholar
  112. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458PubMedGoogle Scholar
  113. Nylund GM, Pavia H (2005) Chemical versus mechanical inhibition of fouling in the red alga Dilsea carnosa. Mar Ecol Prog Ser 299:111–121Google Scholar
  114. Oh HS, Yeon KM, Yang CS, Kim SR, Lee CH, Park SY, Han JY, Lee JK (2012) Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ Sci Technol 46:4877–4884PubMedGoogle Scholar
  115. Omae I (2003) Organotin antifouling paints and their alternatives. Appl Organomet Chem 17:81–105. doi: 10.1002/aoc.396 Google Scholar
  116. Pappas KM, Weingart CL, Winans SC (2004) Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 53:755–769. doi: 10.1111/j.1365-2958.2004.04212.x PubMedGoogle Scholar
  117. Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in the settlement—modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 5:338–349. doi: 10.1046/j.1462-2920.2003.00407.x PubMedGoogle Scholar
  118. Pérez PD, Hagen SJ (2010) Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri. PLoS ONE 5(11):e15473. doi: 10.1371/journal.pone.0015473 PubMedCentralPubMedGoogle Scholar
  119. Pérez-Montaño F, Guasch-Vidal B, González-Barroso S, López-Baena FJ, Cubo T, Ollero FJ, Gil-Serrano AM, Rodríguez-Carvajal MÁ, Bellogín RA, Espuny MR (2011) Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 162:715–723. doi: 10.1016/j.resmic.2011.05.002 PubMedGoogle Scholar
  120. Pirhonen M, Flego D, Heikinheimo R, Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476PubMedGoogle Scholar
  121. Ponnusamy K, Paul D, Kim YS, Kweon JH (2010) 2(5H)-Furanone: a prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition. Braz J Microbiol 14:227–234. doi: 10.1590/S1517-838220100001000032 Google Scholar
  122. Popat R, Crusz SA, Diggle SP (2008) The social behaviours of bacterial pathogens. Br Med Bull 87:63–75. doi: 10.1093/bmb/ldn030 PubMedGoogle Scholar
  123. Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234. doi: 10.1080/08927010903470815 PubMedGoogle Scholar
  124. Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC Press, Boca RatonGoogle Scholar
  125. Rajamani S, Bauer WD, Robinson JB, Farrow JM, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant–Microbe Interact 21:1184–1192. doi: 10.2976/1.3065673 PubMedGoogle Scholar
  126. Rajamani S, Teplitski M, Kumar A, Krediet CJ, Sayre RT, Bauer WD (2011) N-Acyl homoserine lactone lactonase, AiiA, inactivation of quorum-sensing agonists produced by Chlamydomonas reinhardtii (Chlorophyta) and characterization of aiiA-transgenic algae. J Phycol 47:1219–1227. doi: 10.1111/j.1529-8817.2011.01049.x Google Scholar
  127. Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904. doi: 10.1099/mic.0.28601-0 PubMedGoogle Scholar
  128. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244PubMedGoogle Scholar
  129. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. doi: 10.1128/JB.187(5),1799-1814.2005 PubMedCentralPubMedGoogle Scholar
  130. Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11. doi: 10.1111/j.1574-6968.2005.00001.x PubMedGoogle Scholar
  131. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370PubMedGoogle Scholar
  132. Rice SA, Givskov M, Steinberg P, Kjelleberg S (1999) Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J Mol Microbiol Biotechnol 1:23–31PubMedGoogle Scholar
  133. Romero M, Diggle SP, Heeb S, Camara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80. doi: 10.1111/j.1574-6968.2007.01046.x PubMedGoogle Scholar
  134. Roux A, Payne SM, Gilmore MS (2009) Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6:115–124. doi: 10.1016/j.chom.2009.07.004 PubMedCentralPubMedGoogle Scholar
  135. Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858. doi: 10.1099/mic.0.2008/017871-0 PubMedGoogle Scholar
  136. Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171:1209–1223. doi: 10.1164/rccm.200408-1044SO PubMedGoogle Scholar
  137. Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521. doi: 10.1038/msb.2011.55 PubMedCentralPubMedGoogle Scholar
  138. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154. doi: 10.1128/jb.184.4.1140-1154.2002 PubMedCentralPubMedGoogle Scholar
  139. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63. doi: 10.1007/s10126-007-9036-y PubMedGoogle Scholar
  140. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60. doi: 10.1016/S1369-5274(03)00008-0 PubMedGoogle Scholar
  141. Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an Nacylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382. doi: 10.1128/AEM.68.12.6371-6382.2002 PubMedCentralPubMedGoogle Scholar
  142. Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 91:12619–12623PubMedGoogle Scholar
  143. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi: 10.1146/annurev.micro.56.012302.160705 PubMedGoogle Scholar
  144. Taga ME, Bassler BL (2003) Chemical communication among bacteria. PNAS 100:14549–14554. doi: 10.1073/pnas.1934514100 PubMedGoogle Scholar
  145. Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146. doi: 10.1104/pp.103.029918 PubMedCentralPubMedGoogle Scholar
  146. Thoendel M, Horswill AR (2010) Advances in applied microbiology. In: Laskin AI, Sariaslani S, Gadd GM (eds) Biosynthesis of peptide signals in gram-positive bacteria, 1st edn. Elsevier, Amsterdam, pp 91–112. doi: 10.1016/S0065-2164(10)71004-2 Google Scholar
  147. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the Staphylococci. Chem Rev 111:117–151. doi: 10.1021/cr100370n PubMedCentralPubMedGoogle Scholar
  148. Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88. doi: 10.1080/08927010903216564 PubMedGoogle Scholar
  149. Thomas KV, Fileman TW, Readman JW, Waldock MJ (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull 42:677–688. doi: 10.1016/S0025-326X(00),00216-2 PubMedGoogle Scholar
  150. Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234. doi: 10.1016/S0065-2164(07)62007-3 PubMedCentralPubMedGoogle Scholar
  151. Urbanowski ML, Lostroh CP, Greenberg EP (2004) Reversible acylhomoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186:631–637. doi: 10.1128/JB.186.3.631-637.2004 PubMedCentralPubMedGoogle Scholar
  152. Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149:1981–1989PubMedGoogle Scholar
  153. Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322. doi: 10.1099/mic.0.27961-0 PubMedGoogle Scholar
  154. Uroz S, Oger PM, Chapelle E, Adeline MT, Fauer D, Dessaux Y (2008) A Rhodococcus qsd-A-encoded enzyme defines a novel class of large-spectrum quorum quenching lactonases. Appl Environ Microbiol 74:1357–1366. doi: 10.1128/AEM.02014-07 PubMedCentralPubMedGoogle Scholar
  155. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291. doi: 10.1111/j.1574-6976.2005.00012.x PubMedGoogle Scholar
  156. Venturi V, Subramoni S (2009) Future research trends in the major chemical language of bacteria. HFSP J 3:105–116. doi: 10.2976/1.3065673 PubMedCentralPubMedGoogle Scholar
  157. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095. doi: 10.1128/JB.185.7.2080-2095.2003 PubMedCentralPubMedGoogle Scholar
  158. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi: 10.1146/annurev.cellbio.21.012704.131001 PubMedGoogle Scholar
  159. Wei JR, Tsai YH, Horng YT, Soo PC, Hsieh SC, Hsueh PR, Horng JT, Williams P, Lai HC (2006) TnTIR, a mobile Tn3-family transposon carrying spnIR quorum sensing unit. J Bacteriol 188:1518–1525. doi: 10.1128/JB.188.4.1518-1525.2006 PubMedCentralPubMedGoogle Scholar
  160. Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP (2000) N-Acyl homoserine lactone binding to the CarR receptor determines quorum sensing specificity in Erwinia. EMBO J 19:631–641. doi: 10.1093/emboj/19.4.631 PubMedGoogle Scholar
  161. West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594. doi: 10.1016/j.tim.2012.09.004 PubMedGoogle Scholar
  162. Wetherbee R, Lind JL, Burke J (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15. doi: 10.1046/j.1529-8817.1998.340009.x Google Scholar
  163. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404. doi: 10.1016/S0168-6445(01)00059-6 PubMedGoogle Scholar
  164. Wiegemann M (2005) Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applications. Aquat Sci 67:166–176. doi: 10.1007/s00027-005-0758-5 Google Scholar
  165. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938. doi: 10.1099/mic.0.2007/012856-0 PubMedGoogle Scholar
  166. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191. doi: 10.1016/j.mib.2009.01.005 PubMedGoogle Scholar
  167. Winstanley C, Fothergill JL (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290:1–9. doi: 10.1111/j.1574-6968.2008.01394.x PubMedGoogle Scholar
  168. Wright JP, Gurney WSC, Jones CG (2004) Patch dynamics in a landscape modified by ecosystem engineers. Oikos 105:336–348. doi: 10.1111/j.0030-1299.2004.12654.x Google Scholar
  169. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197. doi: 10.1016/S1369-5274(03)00028-6 PubMedGoogle Scholar
  170. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104. doi: 10.1016/j.porgcoat.2003.06.001 Google Scholar
  171. You L, Cox RS III, Weiss R, Arnold FH (2004) Programmed population control by cell–cell communication and regulated killing. Nature 428:868–871. doi: 10.1038/nature02491 PubMedGoogle Scholar
  172. Zargiel KA, Coogan JS, Swain GW (2011) Diatom community structure on commercially available ship hull coatings. Biofouling 27:955–965. doi: 10.1080/08927014.2011.618268 PubMedGoogle Scholar
  173. Zhang L-H, Dong Y-H (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571. doi: 10.1111/j.1365-2958.2004.04234.x Google Scholar
  174. Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002) Structure of a bacterial quorum sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974. doi: 10.1038/nature00833 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Neera Garg
    • 1
  • Geetanjali Manchanda
    • 1
  • Aditya Kumar
    • 2
  1. 1.Department of BotanyPanjab UniversityChandigarhIndia
  2. 2.Government Medical College and HospitalChandigarhIndia

Personalised recommendations