Advertisement

Antonie van Leeuwenhoek

, Volume 105, Issue 1, pp 143–168 | Cite as

Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations

  • Vaibhav Bhandari
  • Radhey S. Gupta
Original Paper

Abstract

All species from the phylum Thermotogae, class Thermotogae, are currently part of a single family, Thermotogaceae. Using genomic data from 17 Thermotogae species, detailed phylogenetic and comparative genomic analyses were carried out to understand their evolutionary relationships and identify molecular markers that are indicative of species relationships within the phylum. In the 16S rRNA gene tree and phylogenetic trees based upon two different large sets of proteins, members of the phylum Thermotogae formed a number of well-resolved clades. Character compatibility analysis on the protein sequence data also recovered a single largest clique that exhibited similar topology to the protein trees and where all nodes were supported by multiple compatible characters. Comparative genomic analyses have identified 85 molecular markers, in the form of conserved signature indels (CSIs), which are specific for different observed clades of Thermotogae at multiple phylogenetic depths. Eleven of these CSIs were specific for the phylum Thermotogae whereas nine others supported a clade comprising of the genera Thermotoga, Thermosipho and Fervidobacterium. Ten other CSIs provided evidence that the genera Thermosipho and Fervidobacterium shared a common ancestor exclusive of the other Thermotogae and four and eight CSIs in other proteins were specific for the genera Thermosipho and Fervidobacterium, respectively. Two other deep branching clades, one consisting of the genera Kosmotoga and Mesotoga and the other comprising of the genera Petrotoga and Marinitoga, were also supported by multiple CSIs. Based upon the consistent branching of the Thermotogae species using different phylogenetic approaches, and numerous identified CSIs supporting the distinctness of different clades, it is proposed that the class Thermotogae should be divided into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.). Additionally, the results of our phylogenetic/compatibility studies along with the species distribution patterns of 22 identified CSIs, provide compelling evidence that the current genus Thermotoga is comprised of two evolutionary distinct groups and that it should be divided into two genera. It is proposed that the emended genus Thermotoga should retain only the species Thermotoga maritima, Tt. neapolitana, Tt. petrophila, Tt. naphthophila, Thermotoga sp. EMP, Thermotoga sp. A7A and Thermotoga sp. RQ2 while the other Thermotoga species (viz. Tt. lettingae, Tt. thermarum, Tt. elfii, Tt. subterranean and Tt. hypogea) be transferred to a new genus, Pseudothermotoga gen. nov.

Keywords

Thermotogae taxonomy Thermotoga Thermotogales Pseudothermotoga Kosmotogales Petrotogales Hyperthermophiles Character compatibility analysis Conserved signature indels Phylogenetic trees 

Notes

Acknowledgments

This work was supported by a research grant from the Natural Science and Engineering Research Council of Canada. We thank Chirayu Chokshi and Amro Qaddoura for assistance in this work. We are also grateful to Prof. Aharon Oren for checking the nomenclatures and etymology of the proposed new taxa and combinations.

Supplementary material

10482_2013_62_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3103 kb)

References

  1. Ajawatanawong P, Baldauf SL (2013) Evolution of protein indels in plants, animals and fungi. BMC Evol Biol 13:140PubMedCentralCrossRefPubMedGoogle Scholar
  2. Balk M, Weijma J, Stams AJ (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368PubMedGoogle Scholar
  3. Ben Hania W, Ghodbane R, Postec A, Brochier-Armanet C, Hamdi M, Fardeau ML, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585CrossRefPubMedGoogle Scholar
  4. Ben Hania W, Godbane R, Postec A, Hamdi M, Ollivier B, Fardeau ML (2012) Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. Int J Syst Evol Microbiol 62:1377–1382CrossRefPubMedGoogle Scholar
  5. Bhandari V, Gupta RS (2014) Phylum Thermotogae. In: E. Rosenberg et al (eds) The prokaryotes—other major lineages of Bacteria and the Archaea. doi: 10.1007/978-3-642-38954-2_118
  6. Bhandari V, Naushad HS, Gupta RS (2012) Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2:98PubMedCentralCrossRefPubMedGoogle Scholar
  7. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287CrossRefPubMedGoogle Scholar
  8. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145PubMedCentralCrossRefPubMedGoogle Scholar
  9. Damste JS, Rijpstra WI, Hopmans EC, Schouten S, Balk M, Stams AJ (2007) Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch Microbiol 188:629–641PubMedCentralCrossRefPubMedGoogle Scholar
  10. Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993a) Isolation of three species of Geotoga and Petrotoga: two new genera, Representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16:191–200CrossRefGoogle Scholar
  11. Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993b) Petrotoga gen. nov. in validation of the publication of new names and new combinations previously effectively published outside of the IJSB, list no. 47. Int J Syst Bacteriol 43:864–865CrossRefGoogle Scholar
  12. Dipippo JL, Nesbo CL, Dahle H, Doolittle WF, Birkland NK, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000CrossRefPubMedGoogle Scholar
  13. Estabrook GF, Johnson CS Jr, McMorris FR (1976) A mathematical foundation for the analysis of cladistic character compatibility. Math Biosci 29:181–187CrossRefGoogle Scholar
  14. Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019CrossRefPubMedGoogle Scholar
  15. Felsenstein J (1993) PHYLIP, version 3.5c. University of Washington, SeattleGoogle Scholar
  16. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc., SunderlandGoogle Scholar
  17. Feng Y, Cheng L, Zhang X, Li X, Deng Y, Zhang H (2010) Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 60:932–937CrossRefPubMedGoogle Scholar
  18. Frock AD, Notey JS, Kelly RM (2010) The genus Thermotoga: recent developments. Environ Technol 31:1169–1181PubMedCentralCrossRefPubMedGoogle Scholar
  19. Frock AD, Gray SR, Kelly RM (2012) Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl Environ Microbiol 78:1978–1986PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek 101:45–54CrossRefPubMedGoogle Scholar
  21. Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59:234–247CrossRefPubMedGoogle Scholar
  23. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238CrossRefPubMedGoogle Scholar
  24. Griffiths E, Gupta RS (2004) Signature sequences in diverse proteins provide evidence for the late divergence of the Order Aquificales. Int Microbiol 7:41–52PubMedGoogle Scholar
  25. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMedCentralPubMedGoogle Scholar
  26. Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182PubMedCentralCrossRefPubMedGoogle Scholar
  27. Gupta RS, Bhandari V (2011) Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. Antonie Van Leeuwenhoek 100:1–34CrossRefPubMedGoogle Scholar
  28. Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434CrossRefPubMedGoogle Scholar
  29. Gupta RS, Lali R (2013) Molecular signatures for the phylum Aquificae and its different clades: proposal for division of the phylum Aquificae into the emended order Aquificales, containing the families Aquificaceae and Hydrogenothermaceae, and a new order Desulfurobacteriales ord. nov., containing the family Desulfurobacteriaceae. Antonie Van Leeuwenhoek 104:349–368CrossRefPubMedGoogle Scholar
  30. Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 7:106PubMedCentralCrossRefPubMedGoogle Scholar
  31. Gupta RS, Sneath PHA (2007) Application of the character compatibility approach to generalized molecular sequence data: branching order of the proteobacterial subdivisions. J Mol Evol 64:90–100CrossRefPubMedGoogle Scholar
  32. Gupta RS, Mahmood S, Adeolu M (2013) A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 4:217PubMedCentralPubMedGoogle Scholar
  33. Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412PubMedCentralCrossRefPubMedGoogle Scholar
  34. Huber R, Hannig M (2006) Thermotogales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 899–922CrossRefGoogle Scholar
  35. Huber R, Stetter K (2001) Genus II. Fervidobacterium Patel, Morgan and Daniel 1985b, 535vp (Effective Publication: Patel, Morgan and Daniel, 1985a, 68). In: Woese LFaS, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology (the Archaea and the deeply branching and phototrophic bacteria), vol 1. Springer, New York, pp 375–377Google Scholar
  36. Huber R, Langworthy T, Konig H, Thomm M, Woese C, Sleytr U, Stetter K (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  37. Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of Thermophilic Eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37CrossRefGoogle Scholar
  38. Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560CrossRefPubMedGoogle Scholar
  39. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405CrossRefPubMedGoogle Scholar
  40. Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glenat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97CrossRefPubMedGoogle Scholar
  41. Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glenat P, Prieur D (2000) Thermotoga subterranea sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, Validation List No. 76. Int J Syst Evol Microbiol 50:1699–1700CrossRefGoogle Scholar
  42. Lee D, Seo H, Park C, Park K (2009) WeGAS: a web-based microbial genome annotation system. Biosci Biotechnol Biochem 73:213–216CrossRefPubMedGoogle Scholar
  43. Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48(Pt 3):1007–1013CrossRefPubMedGoogle Scholar
  44. LPSN Web Resource (2013) List of prokaryotic names with standing in nomenclatureGoogle Scholar
  45. Lucas S, Han J, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Teshima H, Detter JC, Han C, Tapia R, Land M, Hauser L, Kyrpides NC, Ivanova N, Pagani I, Vannier P, Oger P, Bartlett DH, Noll KM, Woyke T, Jebbar M (2012) Complete genome sequence of the thermophilic, piezophilic, heterotrophic bacterium Marinitoga piezophila KA3. J Bacteriol 194:5974–5975PubMedCentralCrossRefPubMedGoogle Scholar
  46. NCBI (2013) NCBI completed microbial genomes. http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html
  47. Nelson KE, Clayton R, Gill S, Gwinn M, Dodson R, Haft DN, Hickey EK, Peterson J, Nelson WC, Ketchum KA, McDonald L, Utterback T, Malek J, Linher K, Garrett MM, Stewart A, Cotton MD, Pratt MS, Phillps C, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg S, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329CrossRefPubMedGoogle Scholar
  48. Nesbo CL, Bapteste E, Curtis B, Dahle H, Lopez P, Macleod D, Dlutek M, Bowman S, Zhaxybayeva O, Birkeland NK, Doolittle WF (2009) The genome of Thermosipho africanus TCF52B: lateral genetic connections to the Firmicutes and Archaea. J Bacteriol 191:1974–1978PubMedCentralCrossRefPubMedGoogle Scholar
  49. Nesbo CL, Bradnan DM, Adebusuyi A, Dlutek M, Petrus AK, Foght J, Doolittle WF, Noll KM (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393CrossRefPubMedGoogle Scholar
  50. Nunoura T, Hirai M, Imachi H, Miyazaki M, Makita H, Hirayama H, Furushima Y, Yamamoto H, Takai K (2010) Kosmotoga arenicorallina sp. nov. a thermophilic and obligately anaerobic heterotroph isolated from a shallow hydrothermal system occurring within a coral reef, southern part of the Yaeyama Archipelago, Japan, reclassification of Thermococcoides shengliensis as Kosmotoga shengliensis comb. nov., and emended description of the genus Kosmotoga. Arch Microbiol 192:811–819CrossRefPubMedGoogle Scholar
  51. Patel BKC, Morgan HW, Daniel RM (1985a) Fervidobacterium gen. nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, Validation List No. 19. Int J Syst Bacteriol 141:63–69Google Scholar
  52. Patel BKC, Morgan HW, Daniel RM (1985b) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69CrossRefGoogle Scholar
  53. Pisani D (2004) Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst Biol 53:978–989CrossRefPubMedGoogle Scholar
  54. Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, Garcia JL, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314CrossRefPubMedGoogle Scholar
  55. Reysenbach AL (2001a) Family I. Thermotogaceae fam. nov. In: Garrity GM, Castenholz RW, Boone DR (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 369–370CrossRefGoogle Scholar
  56. Reysenbach AL (2001b) Phylum BII. Thermotogae phy. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 369–370CrossRefGoogle Scholar
  57. Reysenbach AL (2002a) Thermotogaceae fam. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, Validation List No. 85. Int J Syst Bacteriol 52:685–690Google Scholar
  58. Reysenbach AL (2002b) Thermotogae class. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, Validation List No. 85. Int J Syst Bacteriol 52:685–690Google Scholar
  59. Reysenbach AL (2002c) Thermotogae phy. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, Validation List No. 85. Int J Syst Bacteriol 52:685–690Google Scholar
  60. Reysenbach AL (2002d) Thermotogales ord. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, Validation List No. 85. Int J Syst Bacteriol 52:685–690Google Scholar
  61. Reysenbach AL, Liu Y, Lindgren AR, Wagner ID, Sislak CD, Mets A, Schouten S (2013) Mesoaciditoga lauensis gen. nov., sp. nov., a moderate thermoacidophilic Thermotogales from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.050518-0 Google Scholar
  62. Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459CrossRefPubMedGoogle Scholar
  63. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804CrossRefPubMedGoogle Scholar
  64. Segata N, Bornigen D, Morgan XC, Huttenhower C (2013) PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304PubMedCentralCrossRefPubMedGoogle Scholar
  65. Stetter KO, Huber R (1986) Thermotoga gen nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, Validation List No. 22. Int J Syst Bacteriol 36:573–576CrossRefGoogle Scholar
  66. Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470CrossRefPubMedGoogle Scholar
  67. Swithers KS, Petrus AK, Secinaro MA, Nesbo CL, Gogarten JP, Noll KM, Butzin NC (2012) Vitamin B(12) synthesis and salvage pathways were acquired by horizontal gene transfer to the Thermotogales. Genome Biol Evol 4:730–739CrossRefPubMedGoogle Scholar
  68. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  69. Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita MA, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504CrossRefPubMedGoogle Scholar
  70. Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512CrossRefGoogle Scholar
  71. Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1992) Thermotoga thermarum sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, Validation List No. 41. Int J Syst Bacteriol 42:327–328CrossRefGoogle Scholar
  72. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCentralCrossRefPubMedGoogle Scholar
  73. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299CrossRefPubMedGoogle Scholar
  74. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, Noll KM (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870PubMedCentralCrossRefPubMedGoogle Scholar
  75. Zhaxybayeva O, Swithers KS, Foght J, Green AG, Bruce D, Detter C, Han S, Teshima H, Han J, Woyke T, Pitluck S, Nolan M, Ivanova N, Pati A, Land ML, Dlutek M, Doolittle WF, Noll KM, Nesbo CL (2012) Genome sequence of the mesophilic Thermotogales bacterium Mesotoga prima MesG1.Ag.4.2 reveals the largest Thermotogales genome to date. Genome Biol Evol 4:700–708CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations