Antonie van Leeuwenhoek

, Volume 104, Issue 5, pp 609–618 | Cite as

Potential applications of gut microbiota to control human physiology

  • Özgün Candan Onarman Umu
  • Marije Oostindjer
  • Phillip B. Pope
  • Birger Svihus
  • Bjørg Egelandsdal
  • Ingolf F. Nes
  • Dzung B. DiepEmail author
Review Paper


The microorganisms living in our gut have been a black box to us for a long time. However, with the recent advances in high throughput DNA sequencing technologies, it is now possible to assess virtually all microorganisms in our gut including non-culturable ones. With the use of powerful bioinformatics tools to deal with multivariate analyses of huge amounts of data from metagenomics, metatranscriptomics, metabolomics, we now start to gain some important insights into these tiny gut inhabitants. Our knowledge is increasing about who they are, to some extent, what they do and how they affect our health. Gut microbiota have a broad spectrum of possible effects on health, from preventing serious diseases, improving immune system and gut health to stimulating the brain centers responsible for appetite and food intake control. Further, we may be on the verge of being capable of manipulating the gut microbiota by diet control to possibly improve our health. Diets consisting of different components that are fermentable by microbiota are substrates for different kinds of microbes in the gut. Thus, diet control can be used to favor the growth of some selected gut inhabitants. Nowadays, the gut microbiota is taken into account as a separate organ in human body and their activities and metabolites in gut have many physiological and neurological effects. In this mini-review, we discuss the diversity of gut microbiota, the technologies used to assess them, factors that affect microbial composition and metabolites that affect human physiology, and their potential applications in satiety control via the gut-brain axis.


Gut microbiota Obesity Health Diet Satiety 



The work is supported by The Research Council of Norway. We also want to express our gratitude to Tuanh Phan for artwork of the figure.


  1. Alonso V, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109:S21–S26. doi: 10.1017/S0007114512005235 CrossRefGoogle Scholar
  2. Backhed F (2012) Host responses to the human microbiome. Nutr Rev 70:S14–S17. doi: 10.1111/j.1753-4887.2012.00496.x PubMedCrossRefGoogle Scholar
  3. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723. doi: 10.1073/pnas.0407076101 PubMedCrossRefGoogle Scholar
  4. Blackwood A, Salter J, Dettmar P, Chaplin M (2000) Dietary fibre, physicochemical properties and their relationship to health. J R Soc Promot Health 120(4):242–247. doi: 10.1177/146642400012000412 PubMedCrossRefGoogle Scholar
  5. Blaut M, Collins MD, Welling GW, Doré J, van Loo J, de Vos W (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87(Suppl 2):S203–S211. doi: 10.1079/BJNBJN/2002539 PubMedCrossRefGoogle Scholar
  6. Bosaeus I (2004) Fibre effects on intestinal functions (diarrhoea, constipation and irritable bowel syndrome). Clin Nutr 1:33–38. doi: 10.1016/j.clnu.2004.09.006 Google Scholar
  7. Cani P, Delzenne N (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9(6):737–743. doi: 10.1016/j.coph.2009.06.016 PubMedCrossRefGoogle Scholar
  8. Clemente J, Ursell L, Parfrey L, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. doi: 10.1016/j.cell.2012.01.035 PubMedCrossRefGoogle Scholar
  9. Cryan J, O’Mahony S (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192. doi: 10.1111/j.1365-2982.2010.01664.x PubMedCrossRefGoogle Scholar
  10. da Silva C, van den Borne J, Gerrits W, Kemp B, Bolhuis J (2012) Effects of dietary fibers with different physicochemical properties on feeding motivation in adult female pigs. Physiol Behav 107(2):218–230. doi: 10.1016/j.physbeh.2012.07.001 PubMedCrossRefGoogle Scholar
  11. Delzenne N, Neyrinck A, Cani P (2011) Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb Cell Fact 10(Suppl 1):S10. doi: 10.1186/1475-2859-10-S1-S10 PubMedCrossRefGoogle Scholar
  12. Dettmar PW, Strugala V, Richardson JC (2011) The key role alginates play in health. Food Hydrocoll 25:263–266CrossRefGoogle Scholar
  13. Diamant M, Blaak EE, de Vos WM (2011) Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12(4):272–281. doi: 10.1111/j.1467-789X.2010.00797.x PubMedCrossRefGoogle Scholar
  14. DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83(4):460–469. doi: 10.4065/83.4.460 PubMedCrossRefGoogle Scholar
  15. Dongowski G, Jacobasch G, Schmiedl D (2005) Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. J Agric Food Chem 53(23):9257–9267. doi: 10.1021/jf0507792 PubMedCrossRefGoogle Scholar
  16. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. doi: 10.1126/science.1110591 PubMedCrossRefGoogle Scholar
  17. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2010) Scientific opinion on the substantiation of health claims related to dietary fibre (ID 744, 745, 746, 748, 749, 753, 803, 810, 855, 1415, 1416, 4308, 4330) pursuant to article 13(1) of regulation (EC) no 1924/2006. EFSA J 8(10):1735Google Scholar
  18. Flint HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70(Suppl 1):S10–S13. doi: 10.1111/j.1753-4887.2012.00499.x PubMedCrossRefGoogle Scholar
  19. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94. doi: 10.3389/fphys.2011.00094 PubMedCrossRefGoogle Scholar
  20. Haenen D, Zhang J, Souza da Silva C et al (2013) A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 143(3):274–283. doi: 10.3945/jn.112.169672 PubMedCrossRefGoogle Scholar
  21. Hamer H, Jonkers D, Venema K, Vanhoutvin S, Troost F, Brummer R (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119. doi: 10.1111/j.1365-2036.2007.03562.x PubMedCrossRefGoogle Scholar
  22. Havenaar R (2011) Intestinal health functions of colonic microbial metabolites: a review. Benef Microbes 2(2):103–114. doi: 10.3920/BM2011.0003 PubMedCrossRefGoogle Scholar
  23. Heijtza R, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108(7):3047–3052. doi: 10.1073/pnas.1010529108 CrossRefGoogle Scholar
  24. Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69(5):245–258. doi: 10.1111/j.1753-4887.2011.00388.x PubMedCrossRefGoogle Scholar
  25. Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM, Loong YY (2010) The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J 4:53–58. doi: 10.2174/1874091X01004010053 PubMedCrossRefGoogle Scholar
  26. Hvistendahl M (2012) My microbiome and me. Science 336(6086):1248–1250. doi: 10.1126/science.336.6086.1248 PubMedCrossRefGoogle Scholar
  27. Jeffery I, O’Toole P (2013) Diet-microbiota interactions and their implications for healthy living. Nutrients 5(1):234–252. doi: 10.3390/nu5010234 PubMedCrossRefGoogle Scholar
  28. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336. doi: 10.1038/nature10213 PubMedCrossRefGoogle Scholar
  29. Khoruts A, Sadowsky M (2011) Therapeutic transplantation of the distal gut microbiota. Mucosal Immunol 4(1):4–7. doi: 10.1038/mi.2010.79 PubMedCrossRefGoogle Scholar
  30. Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, Zucker JD, Dore J, Clement K (2013) Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr 98:16–24PubMedCrossRefGoogle Scholar
  31. Latulippe ME, Meheust A, Augustin L et al (2013) ILSI Brazil international workshop on functional foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health. Food Nutr Res 57. doi:  10.3402/fnr.v57i0.19214
  32. le Roux C, Bueter M, Theis N et al (2011) Gastric bypass reduces fat intake and preference. Am J Physiol Regul Integr Comp Physiol 301(4):R1057–R1066. doi: 10.1152/ajpregu.00139.2011 PubMedCrossRefGoogle Scholar
  33. Lesmes U, Beards EJ, Gibson GR, Tuohy KM, Shimoni E (2008) Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J Agric Food Chem 56(13):5415–5421. doi: 10.1021/jf800284d PubMedCrossRefGoogle Scholar
  34. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023. doi: 10.1038/4441022a PubMedCrossRefGoogle Scholar
  35. Morgan X, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8(12):e1002808. doi: 10.1371/journal.pcbi.1002808 PubMedCrossRefGoogle Scholar
  36. Mujico JR, Baccan GC, Gheorghe A, Díaz LE, Marcos A (2013) Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr 110(4):711–720. doi: 10.1017/S0007114512005612 PubMedCrossRefGoogle Scholar
  37. Murphy K, Bloom S (2006) Gut hormones and the regulation of energy homeostasis. Nature 444(7121):854–859. doi: 10.1038/nature05484 PubMedCrossRefGoogle Scholar
  38. Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief, No 82 Google Scholar
  39. Osto M, Abegg K, Bueter M, le Roux CW, Cani PD, Lutz TA (2013) Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol Behav 119:92–96PubMedCrossRefGoogle Scholar
  40. Parnell JA, Reimer RA (2012a) Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 3(1):29–34. doi: 10.4161/gmic.19246 PubMedCrossRefGoogle Scholar
  41. Parnell JA, Reimer RA (2012b) Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr 107(4):601–613. doi: 10.1017/S0007114511003163 PubMedCrossRefGoogle Scholar
  42. Rajilić-Stojanović M, Heilig HG, Tims S, Zoetendal EG, de Vos WM (2012) Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol. doi: 10.1111/1462-2920.12023 PubMedGoogle Scholar
  43. Reimer RA, Maurer AD, Eller LK, Hallam MC, Shaykhutdinov R, Vogel HJ, Weljie AM (2012) Satiety hormone and metabolomic response to an intermittent high energy diet differs in rats consuming long-term diets high in protein or prebiotic fiber. J Proteome Res 11(8):4065–4074. doi: 10.1021/pr300487s PubMedCrossRefGoogle Scholar
  44. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314. doi: 10.1038/nrgastro.2009.35 PubMedCrossRefGoogle Scholar
  45. Roberfroid M, Gibson G, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63. doi: 10.1017/S0007114510003363 PubMedCrossRefGoogle Scholar
  46. Sam AH, Troke RC, Tan TM, Bewick GA (2012) The role of the gut/brain axis in modulating food intake. Neuropharmacology 63(1):46–56. doi: 10.1016/j.neuropharm.2011.10.008 PubMedCrossRefGoogle Scholar
  47. Sanz Y, Rastmanesh R, Agostonic C (2012) Understanding the role of gut microbes and probiotics in obesity: How far are we? Pharmacol Res. doi: 10.1016/j.phrs.2012.10.021 Google Scholar
  48. Sartor R (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134(2):577–594. doi: 10.1053/j.gastro.2007.11.059 PubMedCrossRefGoogle Scholar
  49. Scazzina F, Siebenhandl-Ehn S, Pellegrini N (2013) The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr 109(7):1163–1174. doi: 10.1017/S0007114513000032 PubMedCrossRefGoogle Scholar
  50. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2012) The influence of diet on the gut microbiota. Pharmacol Res. doi: 10.1016/j.phrs.2012.10.020 PubMedGoogle Scholar
  51. Shigwedha N, Jia L (2013) Bifidobacterium in human GI tract: screening, isolation, survival and growth kinetics in simulated gastrointestinal conditions. In: Kongo M (ed) Lactic acid bacteria—R & D for food, health and livestock purposes. InTech, Croatia, pp 281–308Google Scholar
  52. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435. doi: 10.3390/nu5041417 PubMedCrossRefGoogle Scholar
  53. Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736. doi: 10.1073/pnas.0804812105 PubMedCrossRefGoogle Scholar
  54. Soldavini J, Kaunitz JD (2013) Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Dig Dis Sci. doi: 10.1007/s10620-013-2744-4 PubMedGoogle Scholar
  55. Su C, Lei L, Duan Y, Zhang K, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93(3):993–1003. doi: 10.1007/s00253-011-3800-7 PubMedCrossRefGoogle Scholar
  56. Tagliabue A, Elli M (2012) The role of gut microbiota in human obesity: recent findings and future perspectives. Nutr Metab Cardiovasc Dis. doi: 10.1016/j.numecd.2012.09.002 PubMedGoogle Scholar
  57. Thirlby R, Bahiraei F, Randall J, Drewnoski A (2006) Effect of Roux-en-Y gastric bypass on satiety and food likes: the role of genetics. J Gastrointest Surg 10(2):270–277. doi: 10.1016/j.gassur.2005.06.012 PubMedCrossRefGoogle Scholar
  58. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249. doi: 10.1038/nature11552 PubMedCrossRefGoogle Scholar
  59. Walker A, Ince J, Duncan S et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5(2):220–230. doi: 10.1038/ismej.2010.118 PubMedCrossRefGoogle Scholar
  60. Wanders A, van den Borne J, de Graaf C et al (2011) Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 12(9):724–739. doi: 10.1111/j.1467-789X.2011.00895.x PubMedGoogle Scholar
  61. Wanders A, Jonathan M, van den Borne J, Mars M, Schols H, Feskens E, de Graaf C (2013) The effects of bulking, viscous and gel-forming dietary fibres on satiation. Br J Nutr 109(7):1330–1337. doi: 10.1017/S0007114512003145 PubMedCrossRefGoogle Scholar
  62. Xu X, Xu P, Ma C, Tang J, Zhang X (2013) Gut microbiota, host health, and polysaccharides. Biotechnol Adv 31(2):318–337. doi: 10.1016/j.biotechadv.2012.12.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Özgün Candan Onarman Umu
    • 1
  • Marije Oostindjer
    • 1
  • Phillip B. Pope
    • 1
  • Birger Svihus
    • 2
  • Bjørg Egelandsdal
    • 1
  • Ingolf F. Nes
    • 1
  • Dzung B. Diep
    • 1
    Email author
  1. 1.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
  2. 2.Department of Animal and Aquacultural SciencesNorwegian University of Life SciencesÅsNorway

Personalised recommendations