Antonie van Leeuwenhoek

, Volume 104, Issue 4, pp 551–567 | Cite as

From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules

  • Olga Jeske
  • Mareike Jogler
  • Jörn Petersen
  • Johannes Sikorski
  • Christian Jogler
Original Paper


Most members of the phylum Planctomycetes share many unusual traits that are unique for bacteria, since they divide independent of FtsZ through asymmetric budding, possess a complex life cycle and comprise a compartmentalized cell plan. Besides their complex cell biological features Planctomycetes are environmentally important and play major roles in global matter fluxes. Such features have been successfully employed in biotechnological applications such as the anaerobic oxidation of ammonium in wastewater treatment plants or the utilization of enzymes for biotechnological processes. However, little is known about planctomycetal secondary metabolites. This is surprising as Planctomycetes have several key features in common with known producers of small bioactive molecules such as Streptomycetes or Myxobacteria: a complex life style and large genome sizes. Planctomycetal genomes with an average size of 6.9 MB appear as tempting targets for drug discovery approaches. To enable the hunt for bioactive molecules from Planctomycetes, we performed a comprehensive genome mining approach employing the antiSMASH secondary metabolite identification pipeline and found 102 candidate genes or clusters within the analyzed 13 genomes. However, as most genes and operons related to secondary metabolite production are exclusively expressed under certain environmental conditions, we optimized Phenotype MicroArray protocols for Rhodopirellula baltica and Planctomyces limnophilus to allow high throughput screening of putative stimulating carbon sources. Our results point towards a previously postulated relationship of Planctomycetes with algae or plants, which secrete compounds that might serve as trigger to stimulate the secondary metabolite production in Planctomycetes. Thus, this study provides the necessary starting point to explore planctomycetal small molecules for drug development.


Planctomycetes Phenotype MicroArray Bioactive molecules Antibiotics Genome mining 



We thank Anja Stieler and Victoria Michael for their skillful technical assistance. In addition, we thank Boyke Bunk for his bioinformatic support and Petra Henke for her critical review of the manuscript. This work was supported by the EU Framework Program 7: MICROME Collaborative Project [222886-2] and Marie Curie IOF Program (CoGniSePlanctomyces).

Supplementary material

10482_2013_7_MOESM1_ESM.pdf (101 kb)
Supplementary material 1 (PDF 102 kb)
10482_2013_7_MOESM2_ESM.pdf (1.4 mb)
Supplementary material 2 (PDF 1480 kb)
10482_2013_7_MOESM3_ESM.pdf (104 kb)
Supplementary material 3 (PDF 104 kb)
10482_2013_7_MOESM4_ESM.pdf (103 kb)
Supplementary material 4 (PDF 104 kb)
10482_2013_7_MOESM5_ESM.pdf (125 kb)
Supplementary material 5 (PDF 125 kb)
10482_2013_7_MOESM6_ESM.pdf (116 kb)
Supplementary material 6 (PDF 116 kb)


  1. Bengtsson MM, Ovreas L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261PubMedCrossRefGoogle Scholar
  2. Benjamini YH, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  3. Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthelemy M, Prigent Y, Salomon RA, Farias RN, Moreno F, Rebuffat S (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 259:747–755PubMedCrossRefGoogle Scholar
  4. Bochner BR (2009) Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205PubMedCrossRefGoogle Scholar
  5. Cai HY, Yan ZS, Wang AJ, Krumholz LR, Jiang HL (2013) Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic lake taihu reveals the importance of Planctomycetes. Microb Ecol 66:73–83PubMedCrossRefGoogle Scholar
  6. Cayrou C, Raoult D, Drancourt M (2010) Broad-spectrum antibiotic resistance of Planctomycetes organisms determined by Etest. J Antimicrob Chemother 65:2119–2122PubMedCrossRefGoogle Scholar
  7. Chen J, Weimer P (2001) Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiol 147:21–30Google Scholar
  8. Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci USA 107:16297–16302PubMedCrossRefGoogle Scholar
  9. Clum A, Tindall BJ, Sikorski J, Ivanova N, Mavrommatis K, Lucas S, Glavina T, Del R, Nolan M, Chen F, Tice H, Pitluck S, Cheng JF, Chertkov O, Brettin T, Han C, Detter JC, Kuske C, Bruce D, Goodwin L, Ovchinikova G, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2009) Complete genome sequence of Pirellula staleyi type strain (ATCC 27377). Stand Genomic Sci 1:308–316PubMedCrossRefGoogle Scholar
  10. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105PubMedCrossRefGoogle Scholar
  11. Dantas-Santos N, Gomes DL, Costa LS, Cordeiro SL, Costa MS, Trindade ES, Franco CR, Scortecci KC, Leite EL, Rocha HA (2012) Freshwater plants synthesize sulfated polysaccharides: heterogalactans from water hyacinth (Eicchornia crassipes). Int J Mol Sci 13:961–976PubMedCrossRefGoogle Scholar
  12. Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A, Boyen C, Tonon T (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377PubMedGoogle Scholar
  13. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109PubMedCrossRefGoogle Scholar
  14. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496PubMedCrossRefGoogle Scholar
  15. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413PubMedCrossRefGoogle Scholar
  16. Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88:8184–8188PubMedCrossRefGoogle Scholar
  17. Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S (2009) Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov and Phycisphaerae classis nov in the phylum Planctomycetes. J Gen Appl Microbiol 55:267–275PubMedCrossRefGoogle Scholar
  18. Gadler P, Faber K (2007) New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity. Trends Biotechnol 25:83–88PubMedCrossRefGoogle Scholar
  19. Gerber NN, Lechevalier HA (1965) Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938PubMedGoogle Scholar
  20. Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303PubMedCrossRefGoogle Scholar
  21. Göker M, Cleland D, Saunders E, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Beck B, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2011) Complete genome sequence of Isosphaera pallida type strain (IS1B). Stand Genomic Sci 4:63–71PubMedCrossRefGoogle Scholar
  22. Gomez-Escribano JP, Bibb MJ (2012) Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300PubMedCrossRefGoogle Scholar
  23. Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8:e1000339PubMedCrossRefGoogle Scholar
  24. Guo M, Han X, Jin T, Zhou L, Yang J, Li Z, Chen J, Geng B, Zou Y, Wan D, Li D, Dai W, Wang H, Chen Y, Ni P, Fang C, Yang R (2012) Genome sequences of three species in the family Planctomycetaceae. J Bacteriol 194:3740–3741PubMedCrossRefGoogle Scholar
  25. Hempel M, Blume M, Blindow I, Gross EM (2008) Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol 8:58PubMedCrossRefGoogle Scholar
  26. Hira D, Toh H, Migita CT, Okubo H, Nishiyama T, Hattori M, Furukawa K, Fujii T (2012) Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1. FEBS Lett 586:1658–1663PubMedCrossRefGoogle Scholar
  27. Hirsch P, Müller M (1985) Planctomyces limnophilus sp. nov., a stalked and budding bacterium from freshwater. Syst Appl Microbiol 6:276–280CrossRefGoogle Scholar
  28. Holtkamp AD, Kelly S, Ulber R, Lang S (2009) Fucoidans and fucoidanases—focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 82:1–11PubMedCrossRefGoogle Scholar
  29. Jermy A (2010) Evolution: bacterial endocytosis uncovered. Nat Rev Microbiol 8:534PubMedCrossRefGoogle Scholar
  30. Jogler C, Waldmann J, Huang X, Jogler M, Glockner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430PubMedCrossRefGoogle Scholar
  31. Kartal B, Kuenen JG, van Loosdrecht MC (2010) Engineering. Sewage treatment with anammox. Science 328:702–703PubMedCrossRefGoogle Scholar
  32. Komiyama K, Otoguro K, Segawa T, Shiomi K, Yang H, Takahashi Y, Hayashi M, Otani T, Omura S (1993) A new antibiotic, cypemycin. Taxonomy, fermentation, isolation and biological characteristics. J Antibiot 46:1666–1671PubMedCrossRefGoogle Scholar
  33. König E, Schlesner H, Hirsch P (1984) Cell-wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205CrossRefGoogle Scholar
  34. Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PL, Damste JS, Dedysh SN (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193PubMedCrossRefGoogle Scholar
  35. Kulichevskaya IS, Baulina OI, Bodelier PL, Rijpstra WI, Damste JS, Dedysh SN (2009) Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 59:357–364PubMedCrossRefGoogle Scholar
  36. Kwok JC, Warren P, Fawcett JW (2012) Chondroitin sulfate: a key molecule in the brain matrix. Int J Biochem Cell Biol 44:582–586PubMedCrossRefGoogle Scholar
  37. Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Planctomyces limnophilus type strain (Mu 290). Stand Genomic Sci 3:47–56PubMedCrossRefGoogle Scholar
  38. Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78:366–375PubMedCrossRefGoogle Scholar
  39. Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiol 143:739–748CrossRefGoogle Scholar
  40. Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K (2008) Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99:6817–6825PubMedCrossRefGoogle Scholar
  41. Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107:12883–12888PubMedCrossRefGoogle Scholar
  42. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCrossRefGoogle Scholar
  43. Matsuzawa H, Tanaka Y, Tamaki H, Kamagata Y, Mori K (2010) Culture-dependent and independent analyses of the microbial communities inhabiting the giant duckweed (Spirodela polyrrhiza) rhizoplane and isolation of a variety of rarely cultivated organisms within the phylum Verrucomicrobia. Microbes Environ 25:302–308PubMedCrossRefGoogle Scholar
  44. McCormick JR, Flardh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231PubMedCrossRefGoogle Scholar
  45. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(Web Server):W339–W346PubMedCrossRefGoogle Scholar
  46. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:67–81PubMedCrossRefGoogle Scholar
  47. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277PubMedCrossRefGoogle Scholar
  48. Nikolouli K, Mossialos D (2012) Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 34:1393–1403PubMedCrossRefGoogle Scholar
  49. Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801PubMedCrossRefGoogle Scholar
  50. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  51. Pizzetti I, Gobet A, Fuchs BM, Amann R, Fazi S (2011a) Abundance and diversity of Planctomycetes in a Tyrrhenian coastal system of central Italy. Aquat Microb Ecol 65:129–141CrossRefGoogle Scholar
  52. Pizzetti I, Fuchs BM, Gerdts G, Wichels A, Wiltshire KH, Amann R (2011b) Temporal variability of coastal Planctomycetes clades at Kabeltonne station, North Sea. Appl Environ Microbiol 77:5009–5017PubMedCrossRefGoogle Scholar
  53. Popper ZA, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590PubMedCrossRefGoogle Scholar
  54. Read SM, Currie G, Bacic A (1996) Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr Res 281:187–201PubMedCrossRefGoogle Scholar
  55. Rebuffat S (2012) Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans 40:1456–1462PubMedCrossRefGoogle Scholar
  56. Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24:35–47CrossRefGoogle Scholar
  57. Romero D, Traxler MF, Lopez D, Kolter R (2011) Antibiotics as signal molecules. Chem Rev 111:5492–5505PubMedCrossRefGoogle Scholar
  58. Rosengren KJ, Craik DJ (2009) How bugs make lassos. Chem Biol 16:1211–1212PubMedCrossRefGoogle Scholar
  59. Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8:63–69PubMedCrossRefGoogle Scholar
  60. Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the PlanctomycetesVerrucomicrobiaChlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281PubMedCrossRefGoogle Scholar
  61. Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11:e1001565PubMedCrossRefGoogle Scholar
  62. Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580PubMedCrossRefGoogle Scholar
  63. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 13:1973–1994PubMedCrossRefGoogle Scholar
  64. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J (2011) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3:331–335PubMedCrossRefGoogle Scholar
  65. Speth DR, van Teeseling MC, Jetten MS (2012) Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in Planctomycetes and Verrucomicrobia. Front Microbiol 3:304PubMedGoogle Scholar
  66. Straight PD, Kolter R (2009) Interspecies chemical communication in bacterial development. Annu Rev Microbiol 63:99–118PubMedCrossRefGoogle Scholar
  67. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449PubMedCrossRefGoogle Scholar
  68. Vaas LA, Sikorski J, Michael V, Goker M, Klenk HP (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 7:e34846PubMedCrossRefGoogle Scholar
  69. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, Goker M (2013) opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29(14):1823–1824PubMedCrossRefGoogle Scholar
  70. Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814PubMedGoogle Scholar
  71. van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJ, Jetten MS, Strous M (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’. Mol Microbiol 77:701–715PubMedCrossRefGoogle Scholar
  72. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333PubMedCrossRefGoogle Scholar
  73. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249PubMedCrossRefGoogle Scholar
  74. Wallner SR, Bauer M, Wurdemann C, Wecker P, Glockner FO, Faber K (2005) Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration. Angew Chem Int Ed Engl 44:6381–6384PubMedCrossRefGoogle Scholar
  75. Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10PubMedCrossRefGoogle Scholar
  76. Wang H, Song M (2011) Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming. R J 3:29–33Google Scholar
  77. Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glockner FO, Harder J (2012) Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics. doi: 10.1016/j.margen.2012.12.001 PubMedGoogle Scholar
  78. Wenzel SC, Müller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606PubMedCrossRefGoogle Scholar
  79. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkGoogle Scholar
  80. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501PubMedCrossRefGoogle Scholar
  81. Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125:12475–12483PubMedCrossRefGoogle Scholar
  82. Yamada Y, Cane DE, Ikeda H (2012) Diversity and analysis of bacterial terpene synthases. Methods Enzymol 515:123–162PubMedCrossRefGoogle Scholar
  83. Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20:1033–1043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Olga Jeske
    • 1
  • Mareike Jogler
    • 1
  • Jörn Petersen
    • 1
  • Johannes Sikorski
    • 1
  • Christian Jogler
    • 1
  1. 1.Leibniz Institute DSMZBraunschweigGermany

Personalised recommendations