Antonie van Leeuwenhoek

, Volume 103, Issue 4, pp 771–776 | Cite as

Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria

  • Atika Meklat
  • Noureddine Bouras
  • Abdelghani Zitouni
  • Florence Mathieu
  • Ahmed Lebrihi
  • Peter Schumann
  • Cathrin Spröer
  • Hans-Peter Klenk
  • Nasserdine Sabaou
Original Paper


A novel halophilic actinomycete, strain H32T, was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM 45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T).


Actinopolyspora A. saharensis sp. nov. Halophilic actinomycete Sahara Polyphasic taxonomy 



The authors are grateful to Khaled Kherraz for soil sampling from El-Oued province, Gabriele Pötter (DSMZ) for growing A. saharensis cultures and for assistance with chemotaxonomical analyses and Bettina Sträubler for assistance with DNA–DNA hybridizations.

Supplementary material

10482_2012_9859_MOESM1_ESM.ppt (264 kb)
Supplementary material 1 (PPT 263 kb)
10482_2012_9859_MOESM2_ESM.ppt (250 kb)
Supplementary material 2 (PPT 250 kb)
10482_2012_9859_MOESM3_ESM.ppt (232 kb)
Supplementary material 3 (PPT 232 kb)
10482_2012_9859_MOESM4_ESM.doc (79 kb)
Supplementary material 4 (DOC 79 kb)


  1. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. J Appl Microbiol 12:421–423Google Scholar
  2. Chun J, Bae KS, Moon EY, Jung SO, Lee HK, kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913PubMedGoogle Scholar
  3. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257CrossRefGoogle Scholar
  7. Gochnauer MB, Leppard GG, Komaratat P, Kates M, Novitsky T, Kushner DJ (1975) Isolation and characterization of Actinopolyspora halophila, gen. sp. nov., an extremely halophilic actinomycete. Can J Microbiol 2:1500–1511CrossRefGoogle Scholar
  8. Gochnauer MB, Johnson KG, Kushner DJ (1989) Genus Actinopolyspora. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2398–2401Google Scholar
  9. Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–90PubMedGoogle Scholar
  10. Gordon RE, Barnett DA (1977) Resistance to rifampicin and lysozyme of strains of some species of Mycobacterium and Nocardia as a taxonomic tool. Int J Syst Bacteriol 27:176–178CrossRefGoogle Scholar
  11. Gordon RE, Barnett DA, Handerhan JE, Pang CHN (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  12. Guan TW, Liu Y, Zhao K, Xia ZF, Zhang XP, Zhang LL (2010) Actinopolyspora xinjiangensis sp. nov., a novel extremely halophilic actinomycete isolated from a salt lake in Xinjiang, China. Antonie Leeuwenhoek 98:447–453PubMedCrossRefGoogle Scholar
  13. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  14. Hozzein WN, Goodfellow M (2011) Actinopolyspora egyptensis sp. nov., a new halophilic actinomycete. Afr J Microbiol Res 5:100–105Google Scholar
  15. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  16. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132Google Scholar
  17. Kelly KL, Judd DB (1976) Color. Universal language and dictionary of names (National Bureau of Standards special publication 440). US Department of Commerce, Washington, DCGoogle Scholar
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  20. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  21. Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–179Google Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) CLUSTALW and CLUSTALX version 2. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  23. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 34:435–444CrossRefGoogle Scholar
  24. Lechevalier MP, de Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  25. Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471PubMedGoogle Scholar
  26. Marchal N, Bourdon JL, Richard CL (1987) Les milieux de culture pour l’isolement et l’identification biochimique des bactéries. Doin Press, ParisGoogle Scholar
  27. Meklat A, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2011) Halophilic actinomycetes in Saharan soils of Algeria: isolation, taxonomy and antagonistic properties. Appl Environ Microbiol 77:6710–6714PubMedCrossRefGoogle Scholar
  28. Meklat A, Bouras N, Zitouni A, Mathieu F, Lebrihi A, Schumann P, Spröer C, Klenk HP, Sabaou N (2012) Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil. Extremophiles 16:771–776PubMedCrossRefGoogle Scholar
  29. Minnikin DE, O’Donnell AG (1984) Actinomycete envelope lipid and peptidoglycan composition. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of the actinomycetes. Academic Press, London, pp 337–388Google Scholar
  30. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117CrossRefGoogle Scholar
  31. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092PubMedCrossRefGoogle Scholar
  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  33. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. Microbial ID, NewarkGoogle Scholar
  34. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  35. Tang SK, Wang Y, Klenk HP, Shi R, Lou K, Zhang YJ, Chen C, Ruan JS, Li WJ (2011) Actinopolyspora alba sp. nov. and Actinopolyspora erythraea sp. nov., isolated from a salt field, and reclassification of Actinopolyspora iraqiensis Ruan et al. 1994 as a heterotypic synonym of Saccharomonospora halophila. Int J Syst Evol Microbiol 61:1693–1698PubMedCrossRefGoogle Scholar
  36. Waksman SA (1961) Classification, identification, and descriptions of genera and species. In: The actinomycetes, vol 2. Williams & Wilkins, Baltimore, pp 331–332Google Scholar
  37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  38. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153PubMedCrossRefGoogle Scholar
  39. Yoshida M, Matsubara K, Kudo T, Horikoshi K (1991) Actinopolyspora mortivallis sp. nov., a moderately halophilic actinomycete. Int J Syst Bacteriol 41:15–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Atika Meklat
    • 1
    • 2
  • Noureddine Bouras
    • 1
  • Abdelghani Zitouni
    • 1
  • Florence Mathieu
    • 3
  • Ahmed Lebrihi
    • 3
    • 4
  • Peter Schumann
    • 5
  • Cathrin Spröer
    • 5
  • Hans-Peter Klenk
    • 5
  • Nasserdine Sabaou
    • 1
  1. 1.Laboratoire de Biologie des Systèmes Microbiens (LBSM)Ecole Normale Supérieure de KoubaAlgerAlgeria
  2. 2.Département de Biologie, Faculté des sciences Agronomiques, Vétérinaires et BiologiquesUniversité Saâd Dahleb de BlidaBlidaAlgeria
  3. 3.Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS), INPT-ENSATUniversité de ToulouseCastanet-TolosanFrance
  4. 4.Université Moulay IsmailMeknesMorocco
  5. 5.Leibniz Institute DSMZ, German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations