Antonie van Leeuwenhoek

, Volume 103, Issue 3, pp 493–502 | Cite as

Verrucosispora fiedleri sp. nov., an actinomycete isolated from a fjord sediment which synthesizes proximicins

  • Michael Goodfellow
  • Roselyn Brown
  • Lina Ahmed
  • Wasu Pathom-aree
  • Alan T. Bull
  • Amanda L. Jones
  • James E. M. Stach
  • Tiago Domingues Zucchi
  • Lixin Zhang
  • Jian Wang
Original Paper

Abstract

A novel filamentous actinobacterial organism, designated strain MG-37T, was isolated from a Norwegian fjord sediment and examined using a polyphasic taxonomic approach. The organism was determined to have chemotaxonomic and morphological properties consistent with its classification in the genus Verrucosispora and formed a distinct phyletic line in the Verrucosispora 16S rRNA gene tree. It was most closely related to Verrucosispora maris DSM 45365T (99.5 % 16S rRNA gene similarity) and Verrucosispora gifhornensis DSM 44337T (99.4 % 16S rRNA gene similarity) but was distinguished from these strains based on low levels of DNA:DNA relatedness (~56 and ~50 %, respectively). It was readily delineated from all of the type strains of Verrucosispora species based on a combination of phenotypic properties. Isolate MG-37T (=NCIMB 14794T = NRRL-B-24892T) should therefore be classified as the type strain of a novel species of Verrucosispora for which the name Verrucosispora fiedleri is proposed.

Keywords

Verrucosispora fiedleri Polyphasic taxonomy Marine sediment Actinomycetes 

Supplementary material

10482_2012_9831_MOESM1_ESM.docx (108 kb)
Supplementary material 1 (DOCX 107 kb)

References

  1. Bister B, Bishoff D, Ströbele M, Riedlinger J, Reicke A, Bull AT, Zähner H, Fiedler H-P, Süssmuth RD (2004) Abyssomicin C- a novel polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed 43:2574–2576CrossRefGoogle Scholar
  2. Dai H-Q, Wang J, Xin Y-H, Pei G, Tang S-K, Ren B, Ward A, Ruan J-S, Li W-J, Zhang L-X (2010) Verrucosispora sediminis sp. nov., a cyclodipeptide-producing actinomycete from deep-sea sediment. Int J Syst Evol Microbiol 60:1807–1812PubMedCrossRefGoogle Scholar
  3. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  4. Felsenstein J (1993) PHYLIP (Phylogenetic Inference Package), version 3.5c. Department of Genetics, University of Washington, SeattleGoogle Scholar
  5. Fiedler H-P, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones AL, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Süssmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163PubMedCrossRefGoogle Scholar
  6. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol % content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773PubMedCrossRefGoogle Scholar
  7. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79PubMedCrossRefGoogle Scholar
  8. Goodfellow M, Stach JEM, Brown R, Bonda ANV, Jones AL, Mexson J, Fiedler H-P, Zucchi TD, Bull AT (2012) Verrucosispora maris sp. nov., a novel deep-sea actinomycete isolated from a marine sediment which produces abyssomicins. Antonie Van Leeuwenhoek 101:185–193PubMedCrossRefGoogle Scholar
  9. Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler H-P, Sűssmuth RD (2007a) Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot 60:391–394PubMedCrossRefGoogle Scholar
  10. Keller S, Schadt HS, Ortel I (2007b) Action of atrop-abyssomicin C as an inhibitor of 4-amino-4-deoxychorismate synthase PabB. Angew Chem Int Ed 46:8254–8286CrossRefGoogle Scholar
  11. Kim B, Sahin N, Tan GYA, Zakrzewska-Czerwinska J, Goodfellow M (2002) Amycolatopsis eurytherma sp. nov., a thermophilic actinomycete isolated from soil. Int J Syst Evol Microbiol 52:889–894PubMedCrossRefGoogle Scholar
  12. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  13. Kűster E, Williams ST (1964) Selection of media for isolation of streptomycetes. Nature 202:928–929CrossRefGoogle Scholar
  14. Liao Z-L, Tang S-K, Guo L, Zhang Y-Q, Tian X-P, Jiang C-L, Xu L-H, Li W-J (2009) Verrucosispora lutea sp. nov., isolated from a mangrove sediment sample. Int J Syst Evol Microbiol 59:2269–2273PubMedCrossRefGoogle Scholar
  15. Minnikin DE, Alshamaony L, Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer-chromatographic analyses of whole-cell methanolysates. J Gen Microbiol 88:200–204PubMedGoogle Scholar
  16. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  17. O’Donnell AG, Falconer C, Goodfellow M, Ward AC, Williams E (1993) Biosystematics and diversity amongst novel carboxydotrophic actinomycetes. Antonie Van Leeuwenhoek 64:325–340PubMedCrossRefGoogle Scholar
  18. Rheims H, Schumann P, Rohde M, Stackebrandt E (1998) Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae. Int J Syst Bacteriol 48:1119–1127PubMedCrossRefGoogle Scholar
  19. Riedlinger J, Reicke A, Krismer B, Zähner H, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischof D, Süssmuth RD, Fiedler H-P (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279PubMedCrossRefGoogle Scholar
  20. Roh H, Uguru GC, Ko H-J, Kim S, Kim B-Y, Goodfellow M, Bull AT, Kim K-H, Bibb MJ, Choi I-G, Stach JEM (2011) Genome sequence of the abyssomicin- and proximicin-producing marine actinomycete Verrucosispora maris AB-18-032. J Bacteriol 193:3391–3392PubMedCrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  23. Schaal KP (1985) Identification of clinically significant actinomycetes and related bacteria using chemical techniques. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Wiley, Chichester, pp 359–381Google Scholar
  24. Schneider K, Keller S, Wolter FE, Roglin L, Beil W, Seitz O, Nicholson G, Bruntner C, Riedlinger J, Fiedler H-P, Sűssmuth RD (2008) Proximicins A, B and C-antitumor furan analogues of netropsin from the marine actinomycete Verrucosispora induced up regulation of p53 and the cyclin kinase inhibitor p21. Angew Chem Int Ed 47:3258–3261CrossRefGoogle Scholar
  25. Shirai M, Okuda M, Motohashi K, Inoto M, Furihata K, Matsuo Y, Shizuri Y, Seto H (2010) Terpenoids produced by actinomycetes: isolation, structural elucidation and biosynthesis of new diterpenes: gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J Antibiot 63:245–250PubMedCrossRefGoogle Scholar
  26. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  27. Stackebrandt E (2012) Genus XVI. Verrucosispora Rheims, Schumann, Rohde, Stackebrandt, 1998. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology. The Actinobacteria, Part B, vol 5, 2nd edn. Springer, New York, pp 1124–1127Google Scholar
  28. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedGoogle Scholar
  29. Uchida K, Kudo T, Suzuki KI, Nakase T (1999) A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56PubMedCrossRefGoogle Scholar
  30. Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  31. Xi L, Zhang L, Ruan J, Huang Y (2012) Verrucosispora qiuiae sp. nov., isolated from mangrove swamp, and emended description of the genus Verrucosispora. Int J Syst Evol Microbiol 62:1564–1569PubMedCrossRefGoogle Scholar
  32. Xie Q, Hong K, Goodfellow M (2011) Genus-specific primers targeting the 16S rRNA gene for PCR detection of members of the genus Verrucosispora. Antonie Van Leeuwenhoek 100:117–128PubMedCrossRefGoogle Scholar
  33. Xie Q-Y, Lin H-P, Li L, Brown R, Goodfellow M, Deng Z, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Michael Goodfellow
    • 1
  • Roselyn Brown
    • 1
  • Lina Ahmed
    • 1
  • Wasu Pathom-aree
    • 1
  • Alan T. Bull
    • 1
    • 2
  • Amanda L. Jones
    • 1
  • James E. M. Stach
    • 1
  • Tiago Domingues Zucchi
    • 1
  • Lixin Zhang
    • 3
  • Jian Wang
    • 1
    • 3
  1. 1.School of BiologyUniversity of NewcastleNewcastle upon TyneUK
  2. 2.School of BiosciencesUniversity of KentCanterburyUK
  3. 3.Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations