Antonie van Leeuwenhoek

, Volume 103, Issue 3, pp 485–491 | Cite as

Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea

  • Wei Gao
  • Zhisong Cui
  • Qian Li
  • Guangsu Xu
  • Xingjun Jia
  • Li Zheng
Original Paper

Abstract

A Gram-negative, rod-shaped, slightly halophilic and facultatively anaerobic bacterium, designated strain D15-8WT, was isolated from the sediment of the South China Sea. Growth was found to occur optimally at 25 °C, between pH 7.0 and 8.0 and with 1–5 % (w/v) NaCl. The strain was observed to utilize a variety of organic substrates and polycyclic aromatic hydrocarbons as sole carbon sources. The G+C content of the genomic DNA was determined to be 58.7 %. The predominant respiratory quinone was found to be Q-9. The significant fatty acids were determined to be C16:0, C16:1 ω9c, C18:1 ω9c, C12:0 and C14:0 3OH. Analysis of 16S rRNA gene sequences showed that strain D15-8WT fits within the phylogenetic cluster of the genus Marinobacter and is most closely related to Marinobacter segnicrescens CGMCC 1.6489T, Marinobacter bryozoorum DSM 15401T, Marinobacter lacisalsi CECT 7297T and Marinobacter daqiaonensis CGMCC1.9167T. The DNA–DNA hybridization values between strain D15-8WT and the type strains of the most closely related species were 42.3 % (CGMCC 1.6489T), 39.8 % (DSM 15401T), 37.3 % (CECT 7297T) and 35.2 % (CGMCC1.9167T). The results of this polyphasic study indicate that strain D15-8WT represents a novel species of the genus Marinobacter, for which the name Marinobacter nanhaiticus sp. nov. is proposed. The type strain is D15-8WT (=CGMCC 1.11019T=KCTC 23749T).

Keywords

Marinobacter Polycyclic aromatic hydrocarbon Biodegradation South China Sea 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (40906062, 41076108), the Project of Fundamental Science Research, First Institute of Oceanography (2012T07, 2010G23), and Open Fund of Key Lab of Coastal Ecosystem and Environment Research of State Oceanic Administration (201008).

Supplementary material

10482_2012_9830_MOESM1_ESM.docx (406 kb)
Supplementary material 1 (DOCX 406 kb)

References

  1. Aguilera M, Jiménez-Pranteda ML, Kharroub K, González-Paredes A, Durban JJ, Russell NJ, Ramos-Cormenzana A, Monteoliva-Sánchez M (2009) Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain. Int J Syst Evol Microbiol 59:1691–1695PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 3rd edn. Wiley, New YorkGoogle Scholar
  4. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  5. Collins MD (1985) Isoprenoid quinone analysis in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287Google Scholar
  6. Cui ZS, Shao ZZ (2009) Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge. Acta Microbiol Sin 49:902–909Google Scholar
  7. Cui ZS, Lai QL, Dong CM, Shao ZZ (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149PubMedCrossRefGoogle Scholar
  8. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific, BeijingGoogle Scholar
  9. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123PubMedCrossRefGoogle Scholar
  10. Euzéby, J. P. (2012). List of bacterial names with standing in nomenclature. http://www.bacterio.cict.fr/. Accessed 20 June 2012
  11. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576PubMedCrossRefGoogle Scholar
  12. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527PubMedCrossRefGoogle Scholar
  13. Guo B, Gu J, Ye YG, Tang YQ, Kida K, Wu XL (2007) Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57:1970–1974PubMedCrossRefGoogle Scholar
  14. Hedlund BP, Geiselbrecht AD, Staley JT (2001) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 59:886–892Google Scholar
  15. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375PubMedCrossRefGoogle Scholar
  16. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW, Stackebrandt E, Go SJ (2006) Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56:2653–2656PubMedCrossRefGoogle Scholar
  17. Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43:454–457PubMedGoogle Scholar
  18. Márquez MC, Ventosa A (2005) Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55:1349–1351Google Scholar
  19. Melcher RJ, Apitz SE, Hemmingsen BB (2002) Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol 68:2858–2868PubMedCrossRefGoogle Scholar
  20. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306PubMedCrossRefGoogle Scholar
  21. Prakash O, Kumari K, Lal R (2007) Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57:527–531PubMedCrossRefGoogle Scholar
  22. Qu LY, Zhu FL, Zhang JX, Gao CL, Sun XQ (2011) Marinobacter daqiaonensis sp. nov., a moderate halophile isolated from a Yellow Sea salt pond. Int J Syst Evol Microbiol 61:3003–3008PubMedCrossRefGoogle Scholar
  23. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148PubMedCrossRefGoogle Scholar
  24. Rontani JF, Gilewicz MJ, Michotey VD, Zheng TL, Bonin PC, Bertrand JC (1997) Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments. Appl Environ Microbiol 63:636–643PubMedGoogle Scholar
  25. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967Google Scholar
  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, NewarkGoogle Scholar
  28. Shieh WY, Jean WD, Lin YT, Tseng M (2003) Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252PubMedCrossRefGoogle Scholar
  29. Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456PubMedCrossRefGoogle Scholar
  30. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  32. Tourova TP, Antonov AS (1987) Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355CrossRefGoogle Scholar
  33. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Wei Gao
    • 1
  • Zhisong Cui
    • 1
  • Qian Li
    • 1
  • Guangsu Xu
    • 1
  • Xingjun Jia
    • 1
  • Li Zheng
    • 1
  1. 1.Marine Ecology Research CenterThe First Institute of Oceanography, State Oceanic Administration of ChinaQingdaoPeople’s Republic of China

Personalised recommendations