Antonie van Leeuwenhoek

, Volume 103, Issue 2, pp 367–373 | Cite as

Streptomyces bullii sp. nov., isolated from a hyper-arid Atacama Desert soil

  • Rakesh Santhanam
  • Xiaoying Rong
  • Ying Huang
  • Barbara A. Andrews
  • Juan A. Asenjo
  • Michael Goodfellow
Original Paper


A Streptomyces strain isolated from a hyper-arid Atacama Desert soil was characterised using a polyphasic taxonomic approach. The strain, designated C2T, had chemical and morphological properties typical of the genus Streptomyces. The isolate formed a branch in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces chromofuscus and was also loosely related to Streptomyces fragilis NRRL 2424T. DNA:DNA relatedness values between the isolate and its two phylogenetic neighbours showed that it formed a distinct genomic species. The strain was readily distinguished from these organisms using a combination of morphological and phenotypic data. Based on the genotypic and phenotypic results, isolate C2T represents a novel species in the genus Streptomyces, for which the name Streptomyces bullii sp. nov. is proposed. The type strain is C2T (=CGMCC 4.7019T = KACC 15426T).


Streptomyces Polyphasic taxonomy 



M. G. thanks the Leverhulme Trust for an Emeritus Fellowship and Y. H. and X. R. are grateful for support from the National Science Foundation of China (Grant 31100003). We are all indebted to Dr. Hang-Yeon Weon (Korea Agricultural Culture Collection, Suwon, Korea) for the fatty acid data.


  1. Antony-Babu S, Goodfellow M (2008) Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie Van Leeuwenhoek 94:581–591PubMedCrossRefGoogle Scholar
  2. Athalye M, Lacey J, Goodfellow M (1981) Selective isolation and enumeration of actinomycetes using rifampicin. J Appl Microbiol 51:289–299CrossRefGoogle Scholar
  3. Collins MD, Goodfellow M, Minnikin DE, Alderson G (1985) Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58:77–86PubMedCrossRefGoogle Scholar
  4. Euzéby J P (2012) List of bacterial names with standing in nomenclature: a folder available on the Internet. (Last full update: 06 July 2012)
  5. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zoolog 20:406–416CrossRefGoogle Scholar
  8. Goodfellow M, Fiedler HP (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142PubMedCrossRefGoogle Scholar
  9. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322CrossRefGoogle Scholar
  10. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedGoogle Scholar
  11. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, London, pp 21–132Google Scholar
  12. Kämpfer P (2012) Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370, emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, Part B, vol 5, 2nd edn. Springer, New York, pp 1455–1767Google Scholar
  13. Kawato M, Shinobu R (1959) On Streptomyces herbaricolor sp. nov., supplement: a simple technique for microscopical observation. Mem Osaka Univ Lib Arts Educ B Nat Sci 8:114–119Google Scholar
  14. Kim S-B, Goodfellow M (2002) Streptomyces thermospinisporus sp. nov., a moderately thermophilic carboxydotrophic streptomycete isolated from soil. Int J Syst Evol Microbiol 52:1225–1228PubMedCrossRefGoogle Scholar
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park S, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  16. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot C, Vanncanneyt M, Swings J, Kim S-B, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Yamaguchi Y, Tase A, Takahashi M, Sakane T, Suzuki KI, Hatano K (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101(1):73–104PubMedCrossRefGoogle Scholar
  17. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  18. Nachtigall J, Kulik Helaly S, Bull AT, Goodfellow M, Arenjo JA, Maier A, Wiese J, Inhoff JF, Süssmuth R-D, Fiedler H-P (2011) Atacamycins A-C, 22 membered antitumor macrolide derivatives produced by Streptomyces sp. C38. J Antibiot 64:775–780PubMedCrossRefGoogle Scholar
  19. O’Donnell AG, Falconer C, Goodfellow M, Ward AC, Williams E (1993) Biosystematics and diversity amongst novel carboxydotrophic actinomycetes. Antonie Van Leeuwenhoek 64:325–340PubMedCrossRefGoogle Scholar
  20. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 95:121–133PubMedCrossRefGoogle Scholar
  21. Rateb ME, Houssen WE, Arnold M, Abdelrahman M-H, Deng H, Harrison WTA, Okoro CK, Asenjo JA, Andrews BA, Ferguson G, Bull AT, Goodfellow M, Ebel R, Jaspars M (2011a) Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod 74:1965–1971PubMedCrossRefGoogle Scholar
  22. Rateb ME, Houssen WE, Harrison WT, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R, Jaspars M (2011b) Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 74:1491–1499PubMedCrossRefGoogle Scholar
  23. Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703PubMedCrossRefGoogle Scholar
  24. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967Google Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. Santhanam R, Okoro CK, Rong X, Huang Y, Bull AT, Andrews BA, Asenjo AJ, Weon HY, Goodfellow M (2012a) Streptomyces deserti sp. nov., isolated from hyper-arid desert soil. Antonie Van Leeuwenhoek 101:575–581PubMedCrossRefGoogle Scholar
  27. Santhanam R, Okoro CK, Rong X, Huang Y, Bull AT, Goodfellow M (2012b) Streptomyces atacamensis sp. nov., isolated from an extreme hyper-arid soil of the Atacama Desert. Int J Syst Evol Microbiol (in press)Google Scholar
  28. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., NewarkGoogle Scholar
  29. Schulze D, Beese P, Ohlenderf B, Erhard A, Zinecker H, Dorador C, Imhoff J (2011) Abenquines A-D: aminoquinone derivatives produced by Streptomyces sp. strain DB634. J Antibiot 64:763–768CrossRefGoogle Scholar
  30. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16:313–340Google Scholar
  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  33. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray R-G-E et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  34. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Rakesh Santhanam
    • 1
  • Xiaoying Rong
    • 2
  • Ying Huang
    • 2
  • Barbara A. Andrews
    • 3
  • Juan A. Asenjo
    • 3
  • Michael Goodfellow
    • 1
  1. 1.School of BiologyNewcastle UniversityNewcastle upon TyneUK
  2. 2.State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Chemical Engineering and BiotechnologyUniversity of ChileSantiagoChile

Personalised recommendations