Antonie van Leeuwenhoek

, Volume 103, Issue 2, pp 293–298

Actinoplanes hulinensis sp. nov., a novel actinomycete isolated from soybean root (Glycine max (L.) Merr)

  • Yue Shen
  • Chongxi Liu
  • Xiangjing Wang
  • Junwei Zhao
  • Feiyu Jia
  • Yuqin Zhang
  • Liang Wang
  • Deguang Yang
  • Wensheng Xiang
Original Paper

Abstract

A novel actinomycete, designated strain NEAU-M9T, was isolated from soybean root (Glycine max (L.) Merr) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain NEAU-M9T belonged to the genus Actinoplanes, being most closely related to Actinoplanes campanulatus DSM 43148T (98.85 %), Actinoplanes capillaceus DSM 44859T (98.70 %), Actinoplanes lobatus DSM 43150T (98.30 %), Actinoplanes auranticolor DSM 43031T (98.23 %) and Actinoplanes sichuanensis 03-723T (98.06 %); similarity to other type strains of the genus Actinoplanes ranged from 95.87 to 97.56 %. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with A. campanulatus DSM 43148T and A. capillaceus DSM 44859T. This branching pattern was also supported by the tree constructed with the maximum-likelihood method. However, the low level of DNA–DNA relatedness allowed the isolate to be differentiated from the above-mentioned two Actinoplanes species. Moreover, strain NEAU-M9T could also be distinguished from the most closely related species by morphological, physiological and characteristics. Therefore, it is proposed that strain NEAU-M9T represents a novel Actinoplanes species, Actinoplanes hulinensis sp. nov. The type strain of Actinoplanes hulinensis is NEAU-M9T (= CGMCC 4.7036T = DSM 45728T).

Keywords

Actinoplanes hulinensis sp. nov. Polyphasic taxonomy 16S rRNA gene 

Supplementary material

10482_2012_9809_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)
10482_2012_9809_MOESM2_ESM.doc (338 kb)
Supplementary material 2 (DOC 338 kb)
10482_2012_9809_MOESM3_ESM.doc (94 kb)
Supplementary material 3 (DOC 94 kb)
10482_2012_9809_MOESM4_ESM.doc (29 kb)
Supplementary material 4 (DOC 29 kb)
10482_2012_9809_MOESM5_ESM.doc (72 kb)
Supplementary material 5 (DOC 72 kb)

References

  1. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 267–284Google Scholar
  2. Couch JN (1950) Actinoplanes, a new genus of the Actinomycetales. J Elisha Mitchell Sci Soc 66:87–92Google Scholar
  3. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. Goodfellow M, Cross T (1984) Classification. In: Goodfellow M, Mordarski M, Williams ST (eds) The Biology of the Actinomycetes. Academic, London, pp 7–164Google Scholar
  7. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE (1990) Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 136:19–36CrossRefGoogle Scholar
  8. Gordon RE, Barnett DA, Handerhan JE, Pang CHN (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  9. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  10. Kämpfer P, Huber B, Thummes K, Grün-Wollny I, Busse HJ (2007) Actinoplanes couchii sp. nov. Int J Syst Evol Microbiol 57:721–724PubMedCrossRefGoogle Scholar
  11. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in USGoogle Scholar
  12. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  13. Kothe HW (1987) Die Gattungen Actinoplanes und ihre Stellung innerhalb der Actinomycetales. PhD thesis, University of MarburgGoogle Scholar
  14. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Actinomycete taxonomy, special publication 6, Society for Industrial Microbiology, Arlington, pp 277–284Google Scholar
  15. Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  16. Lee YK, Kim HW, Liu CL, Lee HK (2003) A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 52:245–250PubMedCrossRefGoogle Scholar
  17. Loqman S, Barka EA, Clément C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91CrossRefGoogle Scholar
  18. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  19. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of gram-positive bacteria. Lett Appl Microbiol 30:178–182PubMedCrossRefGoogle Scholar
  20. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  23. Sun W, Dong GX, Zhang YQ, Wei YZ, Li QP, Yu LY, Klenk HP, Zhang YQ (2009) Actinoplanes sichuanensis sp. nov. and Actinoplanes xinjiangensis sp. nov. Int J Syst Evol Microbiol 59:2763–2768PubMedCrossRefGoogle Scholar
  24. Tamura T, Hatano K (2001) Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 51:2119–2125PubMedCrossRefGoogle Scholar
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  26. Uchida K, Kudo T, Suzuki K, Nakase T (1999) A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56PubMedCrossRefGoogle Scholar
  27. Vobis G (1989) The Actinoplanetes. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, 4th edn. Williams and Wilkins, Baltimore, pp 2418–2428Google Scholar
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  29. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  30. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178Google Scholar
  31. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yue Shen
    • 1
  • Chongxi Liu
    • 2
  • Xiangjing Wang
    • 2
  • Junwei Zhao
    • 2
  • Feiyu Jia
    • 2
  • Yuqin Zhang
    • 3
  • Liang Wang
    • 2
  • Deguang Yang
    • 1
  • Wensheng Xiang
    • 2
  1. 1.College of AgricultureNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.School of Life ScienceNortheast Agricultural UniversityHarbinPeople’s Republic of China
  3. 3.Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China

Personalised recommendations