Antonie van Leeuwenhoek

, Volume 103, Issue 1, pp 175–194

The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process

  • Whasley Ferreira Duarte
  • Juliana Cunha Amorim
  • Rosane Freitas Schwan
Original Paper

Abstract

Twenty non-Saccharomyces strains were previously tested in pure culture for their ability to grow in 12 % ethanol, their β-glucosidase activity, flocculation, glycerol, ethanol and acetic acid production, fermentation kinetics and their production of volatile compounds. Of these 20 strains, three strains, namely, Pichia anomala UFLA CAF70, P. anomala UFLA CAF119 and Pichia caribbica UFLA CAF733, were evaluated in co-culture with Saccharomyces cerevisiae UFLA CA11. Of the mixed inocula, the mixture of P. caribbica UFLA CAF733 and S. cerevisiae UFLA CA11 gave the highest ethanol concentration (75.37 g/L), the lowest levels of residual glucose (1.14 g/L) and fructose (19.92 g/L), and the highest volumetric productivity (Qp) of ethanol. Twenty-three minor volatile compounds were identified in the fermented sugar cane juice. The mixed culture of P. caribbica UFLA CAF733 and S. cerevisiae UFLA CA11 gave the highest concentration of volatile compounds with good sensory descriptors; these compounds included ethyl esters (290.13 μg/L), acetates (715.21 μg/L) and monoterpenic alcohols (195.56 μg/L). This mixed culture also gave the lowest concentration of volatile acids (1774.46 μg/L) and aldehydes (121.10 μg/L). In principal component analysis, the mixed inoculum of UFLA CAF733 and UFLA CA11 was positively characterized by ethyl hexanoate, 2-phenylethanol, linalool, nonanoic acid, ethyl butyrate, phenylethyl acetate, diethylsuccinate, hexanoic acid, and geraniol. In conclusion, we found that clear improvements could be achieved in the fermentation process with mixed, rather than pure, S. cerevisiae culture. The use of the non-Saccharomyces strain P. caribbica UFLA CAF733 in co-culture with S. cerevisiae UFLA CA11 may therefore be an interesting means by which to improve the quality of cachaça.

Keywords

Cachaça Fermentation Non-Saccharomyces Mixed inoculum 

References

  1. Alvarez AL, Pérez ALD, Aguirre CS, Rodríguez LM, García JC (2012) Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J Biosci Bioeng 113:614–618. doi:10.1016/j.jbiosc.2011.12.015 CrossRefGoogle Scholar
  2. Arellano M, Pelayo C, Ramírez J, Rodriguez I (2008) Characterization of kinetic parameters and the formation of volatile compounds during the tequila fermentation by wilds yeasts isolated from agave juice. J Ind Microbiol Biotechnol 35:835–841. doi:10.1007/s10295-008-0355-4 PubMedCrossRefGoogle Scholar
  3. Arrizon J, Fiore C, Acosta G, Romano P, Gschaedler A (2006) Fermentation behaviour and volatile compounds production by agave and grape must yeasts in high sugar Agave tequiliana and grape must fermentations. Antonie Van Leeuwenhoek 89:181–189. doi:10.1007/s10482-005-9022-1 PubMedCrossRefGoogle Scholar
  4. Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320. doi:10.1016/j.ijfoodmicro.2007.12.023 PubMedCrossRefGoogle Scholar
  5. Berthels NJ, Otero RRC, Bauer FF, Thevelein JM, Pretorius IS (2004) Discrepancy in glucose and fructose utilization during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res 4:683–689. doi:10.1016/j.femsyr.2004.02.005 PubMedCrossRefGoogle Scholar
  6. Brazil (2005) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº. 13, de 29 de junho de 2005. Aprova o regulamento técnico para fixação dos padrões de identidade e qualidade para aguardente de cana e para cachaça. Brasília: Diário Oficial da União, seção 1, pp 3–4, de 30 de junho de 2005Google Scholar
  7. Campos CR, Silva CF, Dias DR, Basso LC, Amorin HV, Schwan RF (2010) Features of Saccharomyces cerevisiae as a culture starter for the production of the distilled sugar cane beverage cachaça in Brazil. J Appl Microbiol 108:1871–1879. doi:10.1111/j.1365-2672.2009.04587.x PubMedGoogle Scholar
  8. Cardeal ZL, de Souza PP, da Silva MDRG, Marriot PJ (2008) Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in cachaça production. Talanta 74:793–799. doi:10.1016/j.talanta.2007.07.021 PubMedCrossRefGoogle Scholar
  9. Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882. doi:10.1016/j.fm.2010.12.001 PubMedCrossRefGoogle Scholar
  10. Czerny M, Christlbauer M, Christlbauer M, Fischer A, Granvogl M, Hammer M et al (2008) Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur Food Res Technol 228:265–273. doi:10.1007/s00217-008-0931-x CrossRefGoogle Scholar
  11. de Souza PP, Cardeal ZL, Augusti R, Morrison P, Marriott PJ (2009) Determination of volatile compounds in Brazilian distilled cachaça by using comprehensive two-dimensional gas chromatography and effects of production pathways. J Chromatogr A 1216:2881–2890. doi:10.1016/j.chroma.2008.10.061 PubMedCrossRefGoogle Scholar
  12. de Souza APG, Vicente MA, Klein RC, Fietto LG, Coutrim MX, Afonso RJCF, Araújo LA, da Silva PHA, Bouillet LEM, Castro IM, Brandão RL (2012) Strategies to select yeast starter culture for production of flavor compounds in cachaça fermentations. Antonie Van Leeuwenhoek 101:379–392. doi:10.1007/s10482-011-9643-5 PubMedCrossRefGoogle Scholar
  13. Duarte WF, Dragone G, Dias DR, Oliveira JM, Teixeira JA, Silva JBA, Schwan RF (2010) Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.). Int J Food Microbiol 143:173–182. doi:10.1016/j.ijfoodmicro.2010.08.014 PubMedCrossRefGoogle Scholar
  14. Duarte WF, de Sousa MVF, Dias DR, Schwan RF (2011) Effect of co-inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the quality of the distilled sugar cane beverage cachaça. J Food Sci 76:C1307–C1318. doi:10.1111/j.1750-3841.2011.02412.x PubMedCrossRefGoogle Scholar
  15. Mallouchos A, Komaitis M, Koutinas A, Kanellaki M (2003) Evolution of volatile byproducts during wine fermentations using immobilized cells on grape skins. J Agric Food Chem 51:2402–2408. doi:10.1021/jf026086s PubMedCrossRefGoogle Scholar
  16. Maturano YP, Assaf LAR, Toro ME, Nally MC, Vallejo M, de Figueroa LIC, Combina M, Vazquez F (2012) Multi-enzyme production by pure and mixed culture of Saccharomyces and non-Saccharomyces yeast during wine fermentation. Int J Food Microbiol 155:43–50. doi:10.1016/j.ijfoodmicro.2012.01.015 PubMedCrossRefGoogle Scholar
  17. Meilgaard MC (1975) Flavor chemistry of beer: Part II: Flavor and threshold of 239 aroma volatiles. MBAA Tech Q 12:151–168Google Scholar
  18. Moreira N, Mendes F, de Pinho PG, Hogg T, Vasconcelos I (2008) Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed culture in grape must. Int J Food Microbiol 124:231–238. doi:10.1016/j.ijfoodmicro.2008.03.025 PubMedCrossRefGoogle Scholar
  19. Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces in mixed cultures bye a cell–cell contact-mediated mechanism. Yeast 20:331–341. doi:10.1002/yea.965 PubMedCrossRefGoogle Scholar
  20. Nonato AE, Carazza F, Silva FC, Carvalho CR, Cardeal ZL (2001) A headspace solid-phase microextraction method for the determination of some secondary compounds of Brazilian sugar cane spirits by gas chromatography. J Agric Food Chem 49:3533–3539. doi:10.1021/jf000896r PubMedCrossRefGoogle Scholar
  21. Nova MXV, Schuler ARP, Brasileiro BTRV, Morais MA Jr (2009) Yeast species involved in artisanal cachaça fermentation in the three stills with different technological levels in Pernambuco, Brazil. Food Microbiol 26:460–466. doi:10.1016/j.fm.2009.02.005 PubMedCrossRefGoogle Scholar
  22. Oliveira ES, Rosa CA, Morgano MA, Serra GE (2004) Fermentation characteristics as criteria for selection of cachaça yeast. World J Microbiol Biotechnol 20:19–24. doi:10.1023/B:WIBI.0000013286.30695.4e CrossRefGoogle Scholar
  23. Pinal L, Cornejo E, Arellano M, Herrera E, Nuñez L, Arrizon J, Gschaedler A (2009) Effect of Agave tequiliana age, cultivation field location and yeast strain on tequila fermentation process. J Ind Microbiol Biotechnol 36:655–661. doi:10.1007/s10295-009-0534-y PubMedCrossRefGoogle Scholar
  24. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Varietal aroma. In: Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (eds) Handbook of enology. The chemistry of wine and stabilization and treatments, vol 2. Wiley, England, pp 187–206CrossRefGoogle Scholar
  25. Rodrígues ME, Lopes CA, Barbagelata RJ, Barda NB, Caballero AC (2010) Influence of Candida pulcherrima Patagonian strain on alcoholic fermentation behaviour and wine aroma. Int J Food Microbiol 138:19–25. doi:10.1016/j.ijfoodmicro.2009.12.025 CrossRefGoogle Scholar
  26. Rojas V, Gil JV, Piñaga F, Manzanares P (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol 86:181–188. doi:10.1016/S0168-1605(03)00255-1 PubMedCrossRefGoogle Scholar
  27. Schwan RF, Mendonça AT, Silva JJ, Silva JR, Rodrigues V, Wheals AE (2001) Microbiology and physiology of cachaça (aguardente) fermentations. Antonie Van Leeuwenhoek 79:89–96. doi:10.1023/A:1010225117654 PubMedCrossRefGoogle Scholar
  28. Siebert TE, Smyth HE, Capone DL, Neuwöhoner C, Pardon KH, Skouroumounis GK et al (2005) Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Anal Bioanal Chem 381:937–947. doi:10.1007/s00216-004-2992-4 PubMedCrossRefGoogle Scholar
  29. Silva CLC, Vianna CR, Cadete RM, Santos RO, Gomes FCO, Oliveira ES, Rosa CA (2009) Selection, growth, and chemo-sensory evaluation of flocculent starter culture strains of Saccharomyces cerevisiae in the large-scale production of traditional Brazilian cachaça. Int J Food Microbiol 131:203–210. doi:10.1016/j.ijfoodmicro.2009.02.027 PubMedCrossRefGoogle Scholar
  30. Soares EV (2010) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18. doi:10.1111/j.1365-2672.2010.04897.x PubMedCrossRefGoogle Scholar
  31. Swangkeaw J, Sukanda V, Butzuke CE, Vichitphan K (2011) Characterization of β-glucosidase from Hanseniaspora sp. and Pichia anomala with potentially aroma-enhancing capability in juice and wine. World J Microbiol Biotechnol 27:423–430. doi:10.1007/s11274-010-0474-8 CrossRefGoogle Scholar
  32. Valles BS, Bedriñana RP, Queipo AL, Alonso JJM (2008) Screening of cider yeasts for sparkling cider production (Champenoise method). Food Microbiol 25:690–697. doi:10.1016/j.fm.2008.03.004 CrossRefGoogle Scholar
  33. Viana F, Gil JV, Genovés S, Vallés S, Manzanares P (2008) Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol 25:778–785. doi:10.1016/j.fm.2008.04.015 PubMedCrossRefGoogle Scholar
  34. Viana F, Gil JV, Vallés S, Manzanares P (2009) Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Haseniaspora osmophila and Saccharomyces cerevisiae. Int J Food Microbiol 135:68–74. doi:10.1016/j.ijfoodmicro.2009.07.025 PubMedCrossRefGoogle Scholar
  35. Viana F, Belloch C, Vallés S, Manzanares P (2011) Monitoring a mixed starter of Hanseniaspora vineaeSaccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol 151:235–240. doi:10.1016/j.ijfoodmicro.2011.09.005 PubMedCrossRefGoogle Scholar
  36. Vicente MA, Fietto LG, Castro IM, dos Santos ANG, Coutrim MX, Brandão RL (2006) Isolation of Saccharomcyes cerevisiae strains producing higher levels of flavoring compounds for production of “cachaça” the Brazilian sugarcane spirit. Int J Food Microbiol 108:51–59. doi:10.1016/j.ijfoodmicro.2005.10.018 PubMedCrossRefGoogle Scholar
  37. Villena MA, Iranzo JFU, Pérez AIB (2007) β-Glucosidase activity in wine yeasts: application in enology. Enzyme Microb Technol 40:420–425. doi:10.1016/j.enzmictec.2006.07.013 CrossRefGoogle Scholar
  38. Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I (2008) Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int J Food Microbiol 125:197–203. doi:10.1016/j.ijfoodmicro.2008.04.001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Whasley Ferreira Duarte
    • 1
  • Juliana Cunha Amorim
    • 1
  • Rosane Freitas Schwan
    • 1
  1. 1.Department of BiologyFederal University of Lavras (UFLA)LavrasBrazil

Personalised recommendations