Antonie van Leeuwenhoek

, Volume 103, Issue 1, pp 121–133 | Cite as

Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum

  • Erick Francisco RakotonirianaEmail author
  • Mamy Rafamantanana
  • Denis Randriamampionona
  • Christian Rabemanantsoa
  • Suzanne Urveg-Ratsimamanga
  • Mondher El Jaziri
  • Françoise Munaut
  • Anne-Marie Corbisier
  • Joëlle Quetin-Leclercq
  • Stéphane Declerck
Original Paper


Thirty-one endophytic bacteria isolated from healthy leaves of Centella asiatica were screened in vitro for their ability to reduce the growth rate and disease incidence of Colletotrichum higginsianum, a causal agent of anthracnose. Isolates of Cohnella sp., Paenibacillus sp. and Pantoea sp. significantly stimulated the growth rate of C. higginsianum MUCL 44942, while isolates of Achromobacter sp., Acinetobacter sp., Microbacterium sp., Klebsiella sp. and Pseudomonas putida had no influence on this plant pathogen. By contrast, Bacillus subtilis BCA31 and Pseudomonas fluorescens BCA08 caused a marked inhibition of C. higginsianum MUCL 44942 growth by 46 and 82 %, respectively. Cell-free culture filtrates of B. subtilis BCA31 and P. fluorescens BCA08 were found to contain antifungal compounds against C. higginsianum MUCL 44942. Inoculation assays on in vitro-cultured plants of C. asiatica showed that foliar application of B. subtilis BCA31, three days before inoculation with C. higginsianum MUCL 44942, significantly reduced incidence and severity of the disease. The role of endophytic bacteria in maintaining the apparent inactivity of C. higginsianum MUCL 44942 in C. asiatica grown in the wild is discussed.


Antifungal activity Centella asiatica Colletotrichum higginsianum Endophytic bacteria In vitro plants 



Erick Francisco Rakotoniriana is grateful to ADRI/UCL (Administration de la Relation Internationale/Université catholique de Louvain, Belgium) for the doctoral fellowship allowing him to perform this research. We also thank the Laboratory of Food and Environmental Microbiology (UCL, Belgium) for providing technical assistance and facilities in bacterial identification. We wish to thank the Belgian Commission Universitaire pour le Développement (CUD) for contributing financially to this research.


  1. Bailey JA, Jeger MJ (1992) Colletotrichum: Biology. Pathology and Control. Commonwealth Mycological Institute, Wallingford, p 388Google Scholar
  2. Bussaban B, Lumyong S, Lumyong P, McKenzie EH, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Microbiol 47:943–948PubMedGoogle Scholar
  3. Cao L, Qui Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic Streptomycetes antagonists of Fusarium wilt pathogen from surface sterilized banana roots. FEMS Microbiol Lett 247:147–152PubMedCrossRefGoogle Scholar
  4. Chanda B, Venugopal SC, Kulshrestha S, Navarre DA, Downie B, Vaillancourt L, Kachroo A, Kachroo P (2008) Glycerol-3-Phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiol 147:2017–2029PubMedCrossRefGoogle Scholar
  5. Chen C, Bauske EM, Muson G, Kloepper JW (1994) Biological control: potential and population dynamics of endophytic bacteria in a cotton/Fusarium wilt system. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Graphic Services, Adelaide, pp 191–193Google Scholar
  6. Costa R, Gomes NCM, Peixoto RS, Rumjanek N, Berg G, Mendonça-Hagler LC, Smalla K (2006) Diversity and antagonistic potential of Pseudomonas spp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biol Biochem 38:2434–2447CrossRefGoogle Scholar
  7. Douville Y, Boland GJ (1992) A note on the antibiotic properties of Bacillus subtilis against Colletotrichum trifolii. Phytoprotection 73:31–36CrossRefGoogle Scholar
  8. Ecker JA, Massire C, Hall TA et al (2006) Identification of Acinetobacter species and genotyping of Acinetobacter baumannii by multilocus PCR and mass spectrometry. J Clin Microbiol 44:2921–2932PubMedCrossRefGoogle Scholar
  9. Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78PubMedCrossRefGoogle Scholar
  10. Fu G, Huang SL, Ye YF, Wu YG, Cen ZL, Lin SH (2010) Characterization of a bacterial biocontrol strain B106 and its efficacy in controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control 55:1–10CrossRefGoogle Scholar
  11. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  12. Hassan MN, Afghan S, Hafeez FY (2010) Suppression of red rot caused by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. Biocontrol 55:531–542CrossRefGoogle Scholar
  13. Higgins BB (1917) A Colletotrichum leafspot of turnips. J Agric Res 10:157–161Google Scholar
  14. Kangatharalingam N, Pierce ML, Essenberg M (2003) A technique for precise inoculation of the internal phyllosphere of cotton with Xanthomonas campestris pv. malvacearum. Phytopathol 93:1204–1208CrossRefGoogle Scholar
  15. Kim GH, Lim MT, Hur J-S, Yum K-J, Koh YJ (2009) Biological control of tea anthracnose using an antagonistic bacterium of Bacillus subtilis isolated from tea leaves. Plant Pathol J 25:99–102CrossRefGoogle Scholar
  16. Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL et al (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8(4):e1002643. doi: 10.1371/journal.ppat.1002643 PubMedCrossRefGoogle Scholar
  17. Kloepper JW, Ryu C-M (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Soil biology, vol 9. Springer, Heidelberg, pp 33–52Google Scholar
  18. Ko KS, Suh JY, Kwon KT, Jung S-I, Park K-H, Kang CI, Chung DR, Peck KR, Song J-H (2007) High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother 60:1163–1167PubMedCrossRefGoogle Scholar
  19. Krishnamurthy Y, Naik SB, Jayaram S (2008) Fungal communities in herbaceous medicinal plants from the Malnad region, southern India. Microbes Environ 23:24–28PubMedCrossRefGoogle Scholar
  20. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  21. Lacava T, Araújo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59PubMedCrossRefGoogle Scholar
  22. Lacava PT, Li W, Araújo WL, Azevedo JL, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393PubMedGoogle Scholar
  23. Lin HF, Chen TH, Liu SD (2011) The antifungal mechanism of Bacillus subtilis against Pestalotiopsis eugeniae and its development for commercial applications against wax apple infection. Afr J Microbiol Res 5:1723–1728Google Scholar
  24. Lu G, Cannon PF, Reid A, Simmons CM (2004) Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol Res 108:53–63PubMedCrossRefGoogle Scholar
  25. Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258PubMedCrossRefGoogle Scholar
  26. Mahadtanapuk S, Sanguansermsri M, Cutler RW, Sardsud V, Anuntalabhochai S (2007) Control of anthracnose caused by Colletotrichum musae on Curcuma alismatifolia Gagnep. using antagonistic Bacillus spp. Am J Agric Biol Sci 2:54–61CrossRefGoogle Scholar
  27. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117PubMedCrossRefGoogle Scholar
  28. Melnick RL, Suárez C, Bailey BA, Backman PA (2011) Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biol Control 57:236–245CrossRefGoogle Scholar
  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  30. Muthukumar A, Bhaskaran R, Sanjeevkumar K (2010) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopesticides 3(1 Special Issue): 105–109Google Scholar
  31. Narusaka Y, Narusaka M, Park P et al (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant Microbe Interact 17:749–762PubMedCrossRefGoogle Scholar
  32. Nguyen PTH, Pettersson OV, Olsson P, Liljeroth E (2010) Identification of Colletotrichum species associated with anthracnose disease of coffee in Vietnam. Eur J Plant Pathol 127:73–87CrossRefGoogle Scholar
  33. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–187CrossRefGoogle Scholar
  34. Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Div 16:131–140Google Scholar
  35. Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Div 18:117–133Google Scholar
  36. Procópio REL, Araújo WL, Maccheroni W Jr, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8:1408–1422PubMedCrossRefGoogle Scholar
  37. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon RA (2007) Phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590PubMedCrossRefGoogle Scholar
  38. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  39. Przybył K, Żłobińska-Podejma M (2000) Effects of some bacteria (Pseudomonas spp. and Erwinia herbicola) on in vitro growth of Piptoporus betulinus. Forest Pathol 30:321–328CrossRefGoogle Scholar
  40. Puja G, Shenoy BD, Hyde KD, Bhat DJ (2006) Echinosphaeria macrospora sp. nov., teleomorph of Vermiculariopsiella endophytica sp. nov. Cryptogamie Mycol 27:11–20Google Scholar
  41. Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2, 4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554PubMedCrossRefGoogle Scholar
  42. Rafat A, Philip K, Muniandy S (2012) A novel source of bioactive compounds: endophytic bacteria isolated from Centella asiatica. J Pure Appl Microbiol 6:11–20Google Scholar
  43. Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23:853–858CrossRefGoogle Scholar
  44. Rakotoniriana EF, Munaut F, Decock C et al (2008) Endophytic fungi from leaves of Centella asiatica: occurrence and potential interactions within leaves. Antonie Van Leeuwenhoek 93:27–36PubMedCrossRefGoogle Scholar
  45. Randriamampionona D, Diallo B, Rakotoniriana EF, Rabemanantsoa C, Cheuk K, Corbisier AM, Mahillon J, Ratsimamanga S, El Jaziri M (2007) Comparative analysis of active constituents in Centella asiatica samples from Madagascar: application for ex situ conservation and clonal propagation. Fitoterapia 78:482–489PubMedCrossRefGoogle Scholar
  46. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  47. Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 52:140–149PubMedCrossRefGoogle Scholar
  48. Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA, Cannon P, Chen R, Pang J, Wang R, Zhang Y, Peng YQ, Sha T (2010) Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102(6):1318–1338PubMedCrossRefGoogle Scholar
  49. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  50. Sarode PD, Rane MR, Chaudhari BL, Chincholkar SB (2009) Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malays J Microbiol 5:6–12Google Scholar
  51. Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202PubMedCrossRefGoogle Scholar
  52. Schulz B, Rommert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism. Mycol Res 103:1275–1283CrossRefGoogle Scholar
  53. Senghor AL, Liang W-J, Ho W-C (2007) Integrated control of Colletotrichum gloeosporioides on mango fruit in Taiwan by the combination of Bacillus subtilis and fruit bagging. Biocontrol Sci Technol 17:865–870CrossRefGoogle Scholar
  54. Shiomi HF, Silva HSA, Melo IS, Nunes FV, Bettiol W (2006) Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Sci Agric 63:32–39CrossRefGoogle Scholar
  55. Sinclair JB, Cerkauskas RF (1996) Latent infection vs. endophytic colonization by fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology and evolution. The American Phytopathological Society, St. Paul, Minnesota, pp 3–29Google Scholar
  56. Srivastava R, Shalini (2008) Antifungal activity of Pseudomonas fluorescens against different plant pathogenic fungi. Elec J Env Agricult Food Chem 7: 2789–2796Google Scholar
  57. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180PubMedCrossRefGoogle Scholar
  58. Yang YL, Liu ZY, Cai L, Hyde KD, Yu ZN, Mckenzie EHC (2009) Colletotrichum anthracnose of Amaryllidaceae. Fungal Div 39:123–146Google Scholar
  59. Zheng CJ, Qin LP (2007) Chemical components of Centella asiatica and their bioactivities. Zhong Xi Yi Jie He Xue Bao 5:348–351PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Erick Francisco Rakotoniriana
    • 1
    • 3
    Email author
  • Mamy Rafamantanana
    • 3
  • Denis Randriamampionona
    • 3
  • Christian Rabemanantsoa
    • 3
  • Suzanne Urveg-Ratsimamanga
    • 3
  • Mondher El Jaziri
    • 5
  • Françoise Munaut
    • 2
  • Anne-Marie Corbisier
    • 1
  • Joëlle Quetin-Leclercq
    • 4
  • Stéphane Declerck
    • 1
  1. 1.Earth and Life Institute, MycologyUniversité catholique de Louvain (UCL)LouvainBelgium
  2. 2.Mycothèque de l’Université catholique de Louvain (MUCL)Earth and Life Institute, Mycology, Université catholique de Louvain (UCL)LouvainBelgium
  3. 3.Laboratoire de microbiologie et de standardisation des médicamentsInstitut malgache de recherches appliquéesAntananarivoMadagascar
  4. 4.Laboratoire de PharmacognosieLouvain Drug Research Institute, Université catholique de LouvainBrusselsBelgium
  5. 5.Laboratoire de biotechnologie végétaleUniversité libre de BruxellesGosseliesBelgium

Personalised recommendations