Antonie van Leeuwenhoek

, Volume 102, Issue 3, pp 425–433 | Cite as

Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner

  • Elodie Tenconi
  • Samuel Jourdan
  • Patrick Motte
  • Marie-Joëlle Virolle
  • Sébastien RigaliEmail author
Original Paper


Filamentous microorganisms of the bacterial genus Streptomyces have a complex life cycle that includes physiological and morphological differentiations. It is now fairly well accepted that lysis of Streptomyces vegetative mycelium induced by programmed cell death (PCD) provides the required nutritive sources for the bacterium to erect spore-forming aerial hyphae. However, little is known regarding cellular compounds released during PCD and the contribution of these molecules to the feeding of surviving cells in order to allow them to reach the late stages of the developmental program. In this work we assessed the effect of extracellular sugar phosphates (that are likely to be released in the environment upon cell lysis) on the differentiation processes. We demonstrated that the supply of phosphorylated sugars, under inorganic phosphate limitation, delays the occurrence of the second round of PCD, blocks streptomycetes life cycle at the vegetative state and inhibits antibiotic production. The mechanism by which sugar phosphates affect development was shown to involve genes of the Pho regulon that are under the positive control of the two component system PhoR/PhoP. Indeed, the inactivation of the response regulator phoP of Streptomyces lividans prevented the ‘sugar phosphate effect’ whereas the S. lividans ppk (polyphosphate kinase) deletion mutant, known to overexpress the Pho regulon, presented an enhanced response to phosphorylated sugars.


Sporulation Antibiotic production Programmed cell death Cannibalism Phosphate limitation 



We are thankful to Juan Francisco Martin, and Angel Manteca for interesting discussions. SR is a FRS-FNRS research associate. This work is supported by a FRIA fellowship from the FRS-FNRS to ET, by the ‘Fonds Spéciaux du Conseil de la Recherche’ from the University of Liège to PM and SR (grant 506 R.CFRA.1237), and by FRS-FNRS grants (Grant Nos. 2.4638.05, 2.4540.06, 2.4531.09, 2.4583.08 and 2.4581.10) to PM.

Supplementary material

10482_2012_9763_MOESM1_ESM.jpg (130 kb)
Supplementary material 1 (JPEG 129 kb)
10482_2012_9763_MOESM2_ESM.jpg (150 kb)
Supplementary material 2 (JPEG 149 kb)


  1. Apel AK, Sola-Landa A et al (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153(Pt 10):3527–3537PubMedCrossRefGoogle Scholar
  2. Bertram R, Rigali S et al (2011) Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis J Bacteriol 193(14):3525–3536Google Scholar
  3. Chouayekh H, Virolle MJ (2002) The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 43(4):919–930Google Scholar
  4. Claessen D, de Jong W et al (2006) Regulation of Streptomyces development: reach for the sky! Trends Microbiol 14(7):313–319PubMedCrossRefGoogle Scholar
  5. Claverys JP, Havarstein LS (2007) Cannibalism and fratricide: mechanisms and raisons d’etre. Nat Rev Microbiol 5(3):219–229PubMedCrossRefGoogle Scholar
  6. Corbari L, Durand L et al (2012) New digestive symbiosis in the hydrothermal vent amphipoda Ventiella sulfuris. C R Biol 335(2):142–154PubMedCrossRefGoogle Scholar
  7. Craig M, Lambert S et al (2012) Unsuspected control of siderophore production by N-acetylglucosamine in Streptomycetes. Environ Microbiol Rep. doi: 10.1111/j17582229201200354x Google Scholar
  8. Darbon E, Martel C, et al. (2012) Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans. Appl Microbiol Biotechnol. doi: 10.1007/s00253-012-3995-2
  9. Diaz M, Esteban A et al (2005) The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151(Pt 8):2583–2592PubMedCrossRefGoogle Scholar
  10. Esteban A, Diaz M et al (2008) Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol 8:201PubMedCrossRefGoogle Scholar
  11. Ghorbel S, Kormanec J et al (2006) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188(2):677–686PubMedCrossRefGoogle Scholar
  12. Gonzalez-Pastor JE (2011) Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35(3):415–424PubMedCrossRefGoogle Scholar
  13. Götz A, Göbel W (2010) Glucose and glucose 6-phosphate as carbon sources in extra- and intracellular growth of enteroinvasive Escherichia coli and Salmonella enterica. Microbiology 156(Pt 4):1176–1187PubMedCrossRefGoogle Scholar
  14. Granozzi C, Billetta R et al (1990) A breakdown in macromolecular synthesis preceding differentiation in Streptomyces coelicolor A3(2). J Gen Microbiol 136(4):713–716PubMedCrossRefGoogle Scholar
  15. Hopwood D (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New YorkGoogle Scholar
  16. Kieser T, Bibb MJ et al (2000) Practical streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  17. Li M, Kim TJ et al (2008) Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 286(1):24–31PubMedCrossRefGoogle Scholar
  18. Luti KJ, Mavituna F (2011) Elicitation of Streptomyces coelicolor with dead cells of Bacillus subtilis and Staphylococcus aureus in a bioreactor increases production of undecylprodigiosin. Appl Microbiol Biotechnol 90(2):461–466PubMedCrossRefGoogle Scholar
  19. Manteca A, Fernandez M et al (2005) Mycelium development in Streptomyces antibioticus ATCC11891 occurs in an orderly pattern which determines multiphase growth curves. BMC Microbiol 5:51PubMedCrossRefGoogle Scholar
  20. Manteca A, Fernandez M et al (2006) Cytological and biochemical evidence for an early cell dismantling event in surface cultures of Streptomyces antibioticus. Res Microbiol 157(2):143–152PubMedCrossRefGoogle Scholar
  21. Manteca A, Ye J et al (2011) Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res 10(12):5481–5492PubMedCrossRefGoogle Scholar
  22. Mendez C, Brana AF et al (1985) Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31(5):446–450PubMedCrossRefGoogle Scholar
  23. Miguelez EM, Hardisson C et al (1999) Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol 145(3):515–525PubMedCrossRefGoogle Scholar
  24. Nothaft H, Rigali S et al (2010) The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 75(5):1133–1144PubMedCrossRefGoogle Scholar
  25. Puglia AM, Vohradsky J et al (1995) Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol Microbiol 17(4):737–746PubMedCrossRefGoogle Scholar
  26. Rigali S, Nothaft H et al (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61(5):1237–1251PubMedCrossRefGoogle Scholar
  27. Rigali S, Titgemeyer F et al (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675PubMedCrossRefGoogle Scholar
  28. Santos-Beneit F, Rodriguez-Garcia A et al (2008) Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154(Pt 8):2356–2370PubMedCrossRefGoogle Scholar
  29. Sola-Landa A, Moura RS et al (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100(10):6133–6138PubMedCrossRefGoogle Scholar
  30. Sola-Landa A, Rodriguez-Garcia A et al (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56(5):1373–1385PubMedCrossRefGoogle Scholar
  31. Swiatek MA, Tenconi E et al (2012) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194(5):1136–1144PubMedCrossRefGoogle Scholar
  32. Viollier PH, Minas W et al (2001a) Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol 183(10):3184–3192PubMedCrossRefGoogle Scholar
  33. Viollier PH, Nguyen KT et al (2001b) Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J Bacteriol 183(10):3193–3203PubMedCrossRefGoogle Scholar
  34. Willey JM, Gaskell AA (2011) Morphogenetic signaling molecules of the streptomycetes. Chem Rev 111(1):174–187PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Elodie Tenconi
    • 1
  • Samuel Jourdan
    • 1
  • Patrick Motte
    • 1
    • 2
  • Marie-Joëlle Virolle
    • 3
  • Sébastien Rigali
    • 1
    Email author
  1. 1.Centre for Protein Engineering (CIP), Institut de Chimie B6aUniversity of LiègeLiègeBelgium
  2. 2.Laboratory of Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CATM), Institute of Botany B22University of LiègeLiègeBelgium
  3. 3.Institut de Génétique et MicrobiologieUniversité Paris Sud 11Orsay CedexFrance

Personalised recommendations