Antonie van Leeuwenhoek

, Volume 102, Issue 4, pp 621–628 | Cite as

Kineococcus endophytica sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu, China

  • Guang-Kai Bian
  • Zhao-Zhong Feng
  • Sheng Qin
  • Ke Xing
  • Zhe Wang
  • Cheng-Liang Cao
  • Chang-Hong Liu
  • Chuan-Chao Dai
  • Ji-Hong Jiang
Original Paper


A novel Gram-positive, motile, non-spore-forming coccus-shaped bacterial strain, designated KLBMP 1274T, was isolated from a halophytic plant (Limonium sinense) collected from the coastal region of Nantong, Jiangsu Province, in east China. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain KLBMP 1274T belongs to the genus Kineococcus and is closely related to Kineococcus rhizosphaerae RP-B16T (98.72 %), Kineococcus aurantiacus IFO 15268T (98.71 %), Kineococcus radiotolerans SRS30216T (98.69 %) and Kineococcus gynurae KKD096T (97.33 %). The 16S rRNA gene sequence similarity to other species of the genus Kineococcus was <97 %. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid, with arabinose and galactose as the characteristic sugars. The predominant menaquinone was MK-9(H2). The polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides, an unknown phospholipid, an unknown glycolipid, and three unknown lipids. Major cellular fatty acids were found to be anteiso-C15: 0 and iso-C14: 0. The chemotaxonomic data for strain KLBMP 1274T were typical of the genus Kineococcus. The total DNA G+C content was 73.4 mol %. DNA–DNA relatedness and differential phenotypic data demonstrated that strain KLBMP 1274T was clearly distinguished from all closely related species of the genus Kineococcus. Thus, strain KLBMP 1274T represents a novel species of the genus Kineococcus, for which the name Kineococcus endophytica sp. nov. is proposed. The type strain is KLBMP 1274T (=KCTC 19886 T = NBRC 108674T).


Kineococcus endophytica sp. nov. 16S rRNA gene Endophytic actinomycete Polyphasic taxonomy 



The authors are grateful to Prof. Tomohiko Tamura (NITE Biological Resource Center, NBRC) for kindly providing the type strains and Prof. Iain C. Sutcliffe for his valuable comments on the manuscript. This research was partially supported by National Natural Science Foundation of China (31000005, 31101502), the Program of Natural Science Foundation of the Jiangsu Higher Education Institutions (10KJB180008, 11KJD210002), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Natural Science Foundations by Xuzhou City (No. XZZD1004).

Supplementary material

10482_2012_9757_MOESM1_ESM.docx (357 kb)
Supplementary material 1 (DOCX 356 kb)


  1. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230PubMedCrossRefGoogle Scholar
  2. Duangmal K, Thamchaipenet A, Ara I, Matsumoto A, Takahashi Y (2008) Kineococcus gynurae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 58:2439–2442PubMedCrossRefGoogle Scholar
  3. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789CrossRefGoogle Scholar
  6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  7. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strains. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  8. Gregersen T (1978) Rapid method for distinction of gram-negative from gram-positive bacteria. Appl Environ Microbiol 5:123–127CrossRefGoogle Scholar
  9. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B, Augsten K (1997) Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133PubMedCrossRefGoogle Scholar
  10. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322CrossRefGoogle Scholar
  11. He L, Li W, Huang Y, Wang L, Liu ZH (2005) Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:939–944CrossRefGoogle Scholar
  12. Kelly KL (1964) Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards, ChicagoGoogle Scholar
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  15. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  16. Lee SD (2009) Kineococcus rhizosphaerae sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 59:2204–2207PubMedCrossRefGoogle Scholar
  17. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428PubMedCrossRefGoogle Scholar
  18. Liu M, Peng F, Wang Y, Zhang KD, Chen G, Fang CX (2009) Kineococcus xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 59:1090–1093PubMedCrossRefGoogle Scholar
  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  20. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  22. Nie GX, Ming H, Zhang J, Feng HG, Li S, Yu TT, Zhou EM, Tang SK, Li WJ (2012) Kineococcus glutineturens sp. nov., isolated from soil in Yunnan, south-west China. Antonie Van Leeuwenhoek. doi: 10.1007/s10482-012-9731-1 Google Scholar
  23. Phillips RW, Wiegel J, Berry CJ, Filermans C, Peacock AD, White DC, Shimkets LJ (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52:933–938PubMedCrossRefGoogle Scholar
  24. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186PubMedCrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI, NewarkGoogle Scholar
  27. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  29. Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New YorkGoogle Scholar
  30. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH et al (1987) International 21 Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation 22 of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  31. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  32. Yokota A, Tamura T, Nishii T, Hasegawa T (1993) Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic, gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 43:52–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Guang-Kai Bian
    • 1
  • Zhao-Zhong Feng
    • 2
  • Sheng Qin
    • 1
  • Ke Xing
    • 1
  • Zhe Wang
    • 1
  • Cheng-Liang Cao
    • 1
  • Chang-Hong Liu
    • 3
  • Chuan-Chao Dai
    • 4
  • Ji-Hong Jiang
    • 1
  1. 1.The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouPeople’s Republic of China
  2. 2.School of Life SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China
  3. 3.School of Life SciencesNanjing UniversityNanjingPeople’s Republic of China
  4. 4.School of Life SciencesNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations