Antonie van Leeuwenhoek

, Volume 102, Issue 2, pp 375–399 | Cite as

Grosmannia and Leptographium spp. associated with conifer-infesting bark beetles in Finland and Russia, including Leptographium taigense sp. nov.

  • Riikka Linnakoski
  • Z. Wilhelm de Beer
  • Tuan A. Duong
  • Pekka Niemelä
  • Ari Pappinen
  • Michael J. Wingfield
Original Paper


Species of Grosmannia with Leptographium anamorphs include important forest pathogens and agents of blue stain in timber. They are commonly found in association with forest pests, such as bark beetles. During a survey of ophiostomatoid fungi in eastern parts of Finland and neighboring Russia, species belonging to the genus Grosmannia were isolated from 12 different bark beetle species infesting Picea abies and Pinus sylvestris, the most economically important conifers in the region. Identification of these fungi was based on morphology, DNA sequence comparisons for three gene regions and phylogenetic analyses. A total of ten taxa were identified. These belonged to six different species complexes in Grosmannia. The phylogenetic analyses provided an opportunity to redefine the G. galeiformis-, L. procerum-, L. lundbergii-, G. piceiperda-, G. olivacea- and G. penicillata-complexes, and to consider the species emerging from the survey within the context of these complexes. The species included G. galeiformis, G. olivacea, L. chlamydatum, L. lundbergii, L. truncatum and a novel taxon, described here as L. taigense sp. nov. In addition, species closely related to G. cucullata, G. olivaceapini comb. nov., G. piceiperda and L. procerum were isolated but their identity could not be resolved. The overall results indicate that the diversity of Grosmannia species in the boreal forests remains poorly understood and that further studies are needed to clarify the status of several species or species complexes.


Bark beetle-associated fungi Ophiostomatales Ophiostomatoid fungi Symbiosis 



We are grateful to St. Petersburg State Forest Technical University, Russia, for their help in fieldwork in Russia. We thank Dr. Henri Vanhanen for assistance with fieldwork and identification of the bark beetle species, Prof. Heikki Roininen for the collection of I. typographus from an outbreak area in Ohtama, Russia, Dr. Min Lu for providing some sequences for reference species, Evgeny Sidorov for translations of Russian literature and our laboratory assistants for their invaluable help with the fungal cultures. Thanks are also due to the Finnish IT center for science (CSC) for providing computational resources. The study was supported financially by the Graduate School in Forest Sciences (GSForest), the Emil Aaltonen Foundation, the Kone Foundation, the Finnish Forest Industries Federation, Finnish Forest Research Institute (Metla), Finnish Food Safety Authority (Evira), and North Karelia University of Applied Sciences, Finland; St. Petersburg State Forest Technical University, Russia; the members of the Tree Protection Co-operative Programme (TPCP) and the THRIP initiative of the Department of Trade and Industry, South Africa.


  1. Afanasova EN (2009) Blue-stain fungi carried by bark beetles in coniferous forests of Central Siberia. In: Pavlov IN, Kutafieva NP (eds) Boreal zone macromycetes. Proceedings of All-Russian research to practice conference. Siberian State Technological University, Russian Federation, Krasnojarsk, pp 138–144Google Scholar
  2. Alexander SA, Horner WE, Lewis KJ (1988) Leptographium procerum as a pathogen of pines. In: Harrington TC, Cobb FW Jr (eds) Leptographium root diseases on conifers. APS Press, St Paul, pp 97–112Google Scholar
  3. Bakshi BK (1951) Studies on four species of Ceratocystis, with a discussion on fungi causing sapstain in Britain. Mycol Pap 35:1–16Google Scholar
  4. Bernier L, Breuil C, Hintz WE, Horgen PA, Jacobi V, Dufour V, Aoun M, Bouvet GF, Kim SH, Diguistini S, Tanguay P, Eades J, Burgess S, de la Bastide P, Pinchback M, Tadesse Y (2004) The Canadian Ophiostoma genome project. Invest Agrar: Sist Recur For 13:105–117Google Scholar
  5. Cardoza YJ, Klepzig KD, Raffa KF (2006a) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645. doi: 10.1111/j.1365-2311.2006.00829.x CrossRefGoogle Scholar
  6. Cardoza YJ, Paskewitz S, Raffa KF (2006b) Travelling through time and space on wings of beetles: a tripartite insect-fungi-nematode association. Symbiosis 41:71–79Google Scholar
  7. Christiansen E, Solheim H (1994) Pathogenicity of five species of Ophiostoma fungi to Douglas-fir. Medd Skogforsk 47:1–12Google Scholar
  8. Davidson RW (1966) New species of Ceratocystis from conifers. Mycopathol Mycol Appl 28:273–286. doi: 10.1007/BF02051237 CrossRefGoogle Scholar
  9. Davidson RW (1971) New species of Ceratocystis. Mycologia 63:5–15CrossRefGoogle Scholar
  10. De Hoog GS (1974) The genera Blastobotrys, Sporothrix, Calcarisporium and Calcarisporiella gen. nov. Stud Mycol 7:1–84Google Scholar
  11. Dowding P (1973) Effect of felling time and insecticide treatment on the interrelationships of fungi and arthropods in pine logs. Oikos 24:422–429CrossRefGoogle Scholar
  12. Duong TA, De Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia. doi: 10.3852/11-109 PubMedGoogle Scholar
  13. Eckhardt LG, Jones JP, Klepzig KD (2004) Pathogenicity of Leptographium species associated with loblolly pine decline. Plant Dis 88:1174–1178. doi: 10.1094/PDIS.2004.88.11.1174 CrossRefGoogle Scholar
  14. Eckhardt LG, Weber AM, Menard R, Jones JP, Hess N (2007) Insect-fungal complex associated with loblolly pine decline in Central Alabama. For Sci 53:84–92Google Scholar
  15. Fedorenko SI (1988) On damage to coniferous logs by insects and fungi at remote shift harvesting areas. Ecol For Prot pp 99–104Google Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  17. Gibbs JN, Inman A (1991) The pine shoot beetle Tomicus piniperda as a vector of blue-stain fungi to windblown pine. Forestry 64:239–249. doi: 10.1093/forestry/64.3.239 CrossRefGoogle Scholar
  18. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  19. Goidànich G (1936) II genere di Ascomiceti ‘Grosmannia’ G. Goid. Boll Staz Pat veg Roma 16:26–60Google Scholar
  20. Goloboff PA, Farris J, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786. doi: 10.1111/j.1096-0031.2008.00217.x CrossRefGoogle Scholar
  21. Grobbelaar J, De Beer ZW, Bloomer P, Wingfield M, Wingfield B (2010) Ophiostoma tsotsi sp. nov., a wound-infesting fungus of hardwood trees in Africa. Mycopathologia 169:413–423. doi: 10.1007/s11046-009-9267-8 PubMedCrossRefGoogle Scholar
  22. Grosmann H (1930) Beitrage zur Kenntnis der Lebensgemeinschaft zwischen Borkenkäfern und Pilzen. Z Parasitenkd 3:56–102CrossRefGoogle Scholar
  23. Haberkern KE, Illman BL, Raffa KF (2002) Bark beetles and fungal associates colonizing white spruce in the great lakes region. Can J For Res 32:1137–1150. doi: 10.1139/X02-033 CrossRefGoogle Scholar
  24. Hallaksela A (1977) Microbial flora isolated from Norway spruce stumps. Acta For Fenn 158:5–41Google Scholar
  25. Harding S (1989) The influence of mutualistic blue-stain fungi on bark beetle population dynamics. Dissertation. Royal Veterinary and Agricultural University, CopenhagenGoogle Scholar
  26. Harrington TC, Cobb FW (1988) Leptographium root diseases on conifers. APS Press, St PaulGoogle Scholar
  27. Harrington TC, Wingfield MJ (1998) The Ceratocystis species on conifers. Can J Bot 76:1446–1457. doi: 10.1139/b98-145 Google Scholar
  28. Harrington TC, Aghayeva DN, Fraedrich SW (2010) New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361CrossRefGoogle Scholar
  29. Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R (2001) Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch Elm Disease fungi. Mycologia 93:111–136Google Scholar
  30. Hausner G, Reid J, Klassen GR (2000) On the phylogeny of members of Ceratocystis s.s. and Ophiostoma that possess different anamorphic states, with emphasis on the anamorph genus Leptographium, based on partial ribosomal DNA sequences. Can J Bot 78:903–916. doi: 10.1139/b00-068 Google Scholar
  31. Hausner G, Iranpour M, Kim J-J, Breuil C, Davis CN, Gibb EA, Reid J, Loewen PC, Hopkin AA (2005) Fungi vectored by the introduced bark beetle Tomicus piniperda in Ontario, Canada, and comments on the taxonomy of Leptographium lundbergii, L. terebrantis, L. truncatum, and L. wingfieldii. Can J Bot 83:1222–1237. doi: 10.1139/b05-095 CrossRefGoogle Scholar
  32. Hawksworth D (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20. doi: 10.3897/mycokeys.1.2062 CrossRefGoogle Scholar
  33. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ et al (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112. doi: 10.5598/imafungus.2011.02.01.14 PubMedCrossRefGoogle Scholar
  34. Hinds TE, Buffam PE (1971) Blue stain in Engelmann spruce trap trees treated with cacodylic acid. USDA For Serv Res. Note RM-201Google Scholar
  35. Horntvedt R, Christiansen E, Solheim H, Wang S (1983) Artificial inoculation with Ips typographus-associated blue-stain fungi can kill healthy Norway spruce trees. Medd Nor Inst Skogforsk 38:1–20Google Scholar
  36. Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect—fungus symbioses threatens naive forest ecosystems. Proc R Soc B 278:2866–2873. doi: 10.1098/rspb.2011.1130 PubMedCrossRefGoogle Scholar
  37. Hunt J (1956) Taxonomy of the genus Ceratocystis. Lloydia 19:1–59Google Scholar
  38. Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates and agents of blue-stain. APS Press, St PaulGoogle Scholar
  39. Jacobs K, Wingfield MJ, Bergdahl DR (1997) A new species of Ophiostoma from North America, similar to Ophiostoma penicillatum. Can J Bot 75:1315–1322. doi: 10.1139/b97-843 CrossRefGoogle Scholar
  40. Jacobs K, Wingfield MJ, Wingfield BD, Yamaoka Y (1998) Comparison of Ophiostoma huntii and O. europhioides and description of O. aenigmaticum sp. nov. Mycol Res 102:289–294. doi: 10.1017/S0953756297004917 CrossRefGoogle Scholar
  41. Jacobs K, Wingfield MJ, Pashenova NV, Vetrova VP (2000) A new Leptographium species from Russia. Mycol Res 104:1524–1529. doi: 10.1017/S0953756200002689 CrossRefGoogle Scholar
  42. Jacobs K, Wingfield MJ, Uzunovic A, Frisullo S (2001) Three new species of Leptographium from pine. Mycol Res 105:490–499. doi: 10.1017/S0953756201003860 CrossRefGoogle Scholar
  43. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418. doi: 10.1017/S0953756204009748 PubMedCrossRefGoogle Scholar
  44. Jacobs K, Solheim H, Wingfield BD, Wingfield MJ (2005) Taxonomic re-evaluation of Leptographium lundbergii based on DNA sequence comparisons and morphology. Mycol Res 109:1149–1161. doi: 10.1017/S0953756205003618 PubMedCrossRefGoogle Scholar
  45. Jacobs K, Eckhardt LG, Wingfield MJ (2006) Leptographium profanum sp. nov., a new species from hardwood roots in North America. Can J Bot 84:759–766. doi: 10.1139/b06-030 CrossRefGoogle Scholar
  46. Jacobs K, Krokene P, Solheim H, Wingfield MJ (2010) Two new species of Leptographium from Dryocoetes autographus and Hylastes cunicularius in Norway. Mycol Prog 9:69–78. doi: 10.1007/s11557-009-0620-6 CrossRefGoogle Scholar
  47. Jankowiak R (2006) Mycobiota associated with Hylurgops palliatus (Gyll.) on Pinus sylvestris L. in Poland. Acta Societatis Botanicorum 75:333–338Google Scholar
  48. Jankowiak R, Kolařík M (2010) Diversity and pathogenicity of ophiostomatoid fungi associated with Tetropium species colonizing Picea abies in Poland. Folia Microbiol 55:145–154CrossRefGoogle Scholar
  49. Jankowiak R, Kacprzyk M, Młynarczyk M (2009) Diversity of ophiostomatoid fungi associated with bark beetles (Coleoptera: Scolytidae) colonizing branches of Norway spruce (Picea abies) in southern Poland. Biologia 64:1170–1177. doi: 10.2478/s11756-009-0188-2 CrossRefGoogle Scholar
  50. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9:286–298. doi: 10.1093/bib/bbn013 PubMedCrossRefGoogle Scholar
  51. Kendrick WB (1962) The Leptographium complex. Verticladiella Hughes. Can J Bot 40:771–797. doi: 10.1139/b62-072 CrossRefGoogle Scholar
  52. Kim J-J, Lim YW, Wingfield MJ, Breuil C, Kim GH (2004) Leptographium bistatum sp. nov., a new species with a Sporothrix synanamorph from Pinus radiata in Korea. Mycol Res 108:699–706. doi: 10.1017/S0953756204000036 PubMedCrossRefGoogle Scholar
  53. Kim JJ, Lim YW, Seifert KA, Kim SH, Breuil C, Kim GH (2005) Taxonomy of Ophiostoma radiaticola sp. nov. (Ophiostomatales, Ascomycetes), the teleomorph of Pesotum pini, isolated from logs of Pinus radiata. Mycotaxon 91:481–496Google Scholar
  54. Kim S, Harrington TC, Lee JC, Seybold SJ (2011) Leptographium tereforme sp. nov. and other Ophiostomatales isolated from the root-feeding bark beetle Hylurgus ligniperda in California. Mycologia 103:152–163. doi: 10.3852/10-096 PubMedCrossRefGoogle Scholar
  55. Kirisits T (2004) Fungal associates of European bark beetles with emphasis on the Ophiostomatoid fungi. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans H (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers, Dordrecht, pp 181–235CrossRefGoogle Scholar
  56. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5:150–163. doi: 10.1093/bib/5.2.150 CrossRefGoogle Scholar
  57. Lagerberg T, Lundberg G, Melin E (1927) Biological and practical researches into blueing in pine and spruce. Sven Skogsvårdsfören Tidskr 25:145–272Google Scholar
  58. Li H-Y, Kao H-W, Chen C-Y (2009) Ophiostomatoid fungi from imported wood in Taiwan. Taiwania 54:343–352Google Scholar
  59. Linnakoski R, De Beer ZW, Rousi M, Niemelä P, Pappinen A, Wingfield MJ (2008) Fungi, including Ophiostoma karelicum sp. nov., associated with Scolytus ratzeburgi infesting birch in Finland and Russia. Mycol Res 112:1475–1488. doi: 10.1016/j.mycres.2008.06.007 PubMedCrossRefGoogle Scholar
  60. Linnakoski R, De Beer ZW, Rousi M, Solheim H, Wingfield MJ (2009) Ophiostoma denticiliatum sp. nov. and other Ophiostoma species associated with the birch bark beetle in southern Norway. Persoonia 23:9–15. doi: 10.3767/003158509X46803 PubMedCrossRefGoogle Scholar
  61. Linnakoski R, De Beer ZW, Ahtiainen J, Sidorov E, Niemelä P, Pappinen A, Wingfield MJ (2010) Ophiostoma spp. associated with pine- and spruce-infesting bark beetles in Finland and Russia. Persoonia 25:72–93. doi: 10.3767/003158510X550845 PubMedCrossRefGoogle Scholar
  62. Lu Q, Decock C, Zhang XY, Maraite H (2008) Leptographium sinoprocerum sp. nov., an undescribed species associated with Pinus tabuliformis-Dendroctonus valens in northern China. Mycologia 100:275–290. doi: 10.3852/mycologia.100.2.275 PubMedCrossRefGoogle Scholar
  63. Lu M, Zhou XD, De Beer ZW, Wingfield MJ, Sun J-H (2009a) Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Divers 38:133–145Google Scholar
  64. Lu Q, Decock C, Zhang X, Maraite H (2009b) Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees. Antonie Leeuwenhoek 96:275–293. doi: 10.1007/s10482-009-9343-6 PubMedCrossRefGoogle Scholar
  65. Lu M, Wingfield MJ, Gillette N, Sun J-H (2011) Do novel genotypes drive the success of an invasive bark beetle-fungus complex? Implications for re-invasion. Ecology 29:2013–2015CrossRefGoogle Scholar
  66. Massoumi Alamouti S, Kim J-J, Breuil C (2006) A new Leptographium species associated with the northern spruce engraver, Ips perturbatus, in western Canada. Mycologia 98:149–160. doi: 10.3852/mycologia.98.1.149 PubMedCrossRefGoogle Scholar
  67. Massoumi Alamouti S, Kim J-J, Humble L, Uzunovic A, Breuil C (2007) Ophiostomatoid fungi associated with the northern spruce engraver, Ips perturbatus, in western Canada. Antonie Leeuwenhoek 91:19–34. doi: 10.1007/s10482-006-9092-8 PubMedCrossRefGoogle Scholar
  68. Massoumi Alamouti S, Tsui CKM, Breuil C (2009) Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 113:822–835. doi: 10.1016/j.mycres.2009.03.003 PubMedCrossRefGoogle Scholar
  69. Masuya H, Wingfield M, Kaneko S, Yamaoka Y (2000) Leptographium pini-densiflorae sp. nov. from Japanese red pine. Mycosci 41:425–430. doi: 10.1007/bf02461660 CrossRefGoogle Scholar
  70. Masuya H, Kim JJ, Wingfield MJ, Yamaoka Y, Kaneko S, Breuil C, Kim GH (2005) Discovery and description of a teleomorph for Leptographium koreanum. Mycotaxon 94:159–173Google Scholar
  71. Masuya H, Yamaoka Y, Kaneko S, Yamaura Y (2009) Ophiostomatoid fungi isolated from Japanese red pine and their relationships with bark beetles. Mycoscience 50:212–223CrossRefGoogle Scholar
  72. Mathiesen A (1950) Über einige mit Borkenkäfern assoziierte Bläuepilze in Schweden. Oikos 2:275–308CrossRefGoogle Scholar
  73. Mathiesen A (1951) Einige neue Ophiostoma-Arten in Schweden. Sven Bot Tidskr 45:203–232Google Scholar
  74. Mathiesen-Käärik A (1953) Eine Übersicht uber die gewöhnlichsten mit Borkenkäfern assoziierten Bläuepilze in Schweden und einige für Schweden neue Bläupilze. Medd Statens Skogsforskninginst 43:1–74Google Scholar
  75. Mouton M, Wingfield MJ, van Wyk PS (1992) The anamorph of Ophiostoma francke-grosmanniae is a Leptographium. Mycologia 84:857–862CrossRefGoogle Scholar
  76. Münch E (1907) De Blaufäule des Nadelholzes. I-II. Naturwiss Z. Forst- und Landwirtsch 5:531–573Google Scholar
  77. Odgen TH, Rosenberg MS (2007) How should gaps be treated in parsimony? A comparison of approaches using simulation. Mol Phylogen Evol 42:817–826. doi: 10.1016/j.ympev.2006.07.021 CrossRefGoogle Scholar
  78. O’Donnel K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogen Evol 7:103–116. doi: 10.1006/mpev.1996.0376 CrossRefGoogle Scholar
  79. Ohsawa M, Langor D, Hiratsuka Y, Yamaoka Y (2000) Fungi associated with Dendroctonus rufipennis and Polygraphus rufipennis, and white spruce inoculation tests. Can J Plant Pathol 22:254–257. doi: 10.1080/07060660009500472 CrossRefGoogle Scholar
  80. Okada G, Seifert KA, Takematsu A, Yamaoka Y (1998) A molecular phylogenetic reappraisal of the Graphium complex based on 18S rDNA sequences. Can J Bot 76:1495–1506. doi: 10.1139/b98-089 Google Scholar
  81. Olchowecki A, Reid J (1974) Taxonomy of the genus Ceratocystis in Manitoba. Can J Bot 52:1675–1711. doi: 10.1139/b74-222 CrossRefGoogle Scholar
  82. Paciura D, De Beer ZW, Jacobs K, Zhou XD, Ye H, Wingfield MJ (2010) Eight new Leptographium species associated with tree-infesting bark beetles in China. Persoonia 25:94–108. doi: 10.3767/003158510X551097 PubMedCrossRefGoogle Scholar
  83. Pashenova NV, Polyakova GG (2009) The study on blue-staining fungi in coniferous forests of Central Siberia. In: Pavlov IN, Kutafieva NP (eds) Boreal zone macromycetes. Proceedings of All-Russian research to practice conference. Siberian State Technological University, Russian Federation, Krasnojarsk, pp 91–94Google Scholar
  84. Pashenova NV, Vetrova VP, Konstantinov MYu, Aphanasova EN (2001) Ophiostomataceae fungi associated with Ips typographus in coniferous forests of Central Siberia. Lesovedenie 4:11–19Google Scholar
  85. Pashenova NV, Vetrova VP, Aphanasova EN, Polyakova GG, Konstantinov MYu (2004) Ophiostomatoid fungi in Middle Siberia. In: Proceedings of the IVth International Symposium of Structure, properties and quality of wood, pp 443–446Google Scholar
  86. Reay SD, Thwaites JM, Farrell RL (2005) A survey of Ophiostoma species vectored by Hylastes ater to pine seedlings in New Zealand. For Pathol 35:105–113. doi: 10.1111/j.1439-0329.2004.00393.x CrossRefGoogle Scholar
  87. Rennerfelt E (1950) Über den Zusammenhang zwischen dem Verblauen des Holzes und den Insekten. Oikos 2:120–137CrossRefGoogle Scholar
  88. Romón P, Zhou X, Iturrondobeitia JC, Wingfield MJ, Goldarazena A (2007) Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Can J Microbiol 53:756–767. doi: 10.1139/W07-001 PubMedCrossRefGoogle Scholar
  89. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  90. Rumbold CT (1931) Two blue-staining fungi associated with bark-beetle infestation of pines. J Agric Res 43:847–873Google Scholar
  91. Savonmäki S (1990) Tärkeimmät kaarnakuoriaisten mäntyyn ja kuuseen levittämät sinistäjäsienilajit. Masters Thesis, Department of Plant Pathology, University of HelsinkiGoogle Scholar
  92. Siemaszko W (1939) Zespoly grzybów towarzyszących kornikom polskim. Planta Pol 7:1–54Google Scholar
  93. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle—fungus symbioses: a challenge to the classic paradigm. Ann Rev Entomol 56:255–272. doi: 10.1146/annurev-ento-120709-144839 CrossRefGoogle Scholar
  94. Six D, De Beer ZW, Duong TA, Carroll A, Wingfield MJ (2011) Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae. Antonie Leeuwenhoek 100:231–244. doi: 10.1007/s10482-011-9582-1 PubMedCrossRefGoogle Scholar
  95. Six DL, Harrington TC, Steimel J, McNew D, Paine TD (2003) Genetic relationships among Leptographium terebrantis and the mycangial fungi of three Western Dendroctonus bark beetles. Mycologia 95:781–792Google Scholar
  96. Solheim H (1986) Species of Ophiostomataceae isolated from Picea abies infested by the bark beetle Ips typographus. Nord J Bot 6:199–207. doi: 10.1111/j.1756-1051.1986.tb00874.x CrossRefGoogle Scholar
  97. Solheim H (1988) Pathogenicity of some Ips typographus-associated blue-stain fungi to Norway spruce. Medd Nor Inst Skogforsk 40:1–11Google Scholar
  98. Solheim H, Långström B (1991) Blue-stain fungi associated with Tomicus piniperda in Sweden and preliminary observations on their pathogenicity. Ann Sci For 48:149–156. doi: 10.1051/forest:19910203 CrossRefGoogle Scholar
  99. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771. doi: 10.1080/10635150802429642 PubMedCrossRefGoogle Scholar
  100. Strydom RC, Wingfield BD, Wingfield MJ (1997) Ribosomal DNA sequence comparison of Leptographium lundbergii and L. truncatum and neotypification of L. lundbergii. Syst Appl Microbiol 20:295–300. doi: 10.1016/S0723-2020(97)80076-8 CrossRefGoogle Scholar
  101. Thwaites JM, Farrell RL, Duncan SM, Reay SD, Blanchette RA, Hadar E, Hadar Y, Harrington TC, McNew D (2005) Survey of potential sapstain fungi on Pinus radiata in New Zealand. N Z J Bot 43:653–663. doi: 0028-825X/05/4303-0653 CrossRefGoogle Scholar
  102. Upadhyay HP (1981) A monograph of Ceratocystis and Ceratocystiopsis. The University of Georgia Press, GeorgiaGoogle Scholar
  103. Van der Westhuizen K, Wingfield MJ, Yamaoka Y, Kemp GHJ, Crous PW (1995) A new species of Ophiostoma with a Leptographium anamorph from larch in Japan. Mycol Res 99:1334–1338. doi: 10.1016/S0953-7562(09)81217-3 CrossRefGoogle Scholar
  104. Viiri H (1997) Fungal associates of the spruce bark beetle Ips typographus L. (Col. Scolytidae) in relation to different trapping methods. J Appl Entomol 121:529–533. doi: 10.1111/j.1439-0418.1997.tb01444.x CrossRefGoogle Scholar
  105. Villarreal M, Rubio V, de Troya MT, Arenal F (2005) A new Ophiostoma species isolated from Pinus pinaster in the Iberian Peninsula. Mycotaxon 92:259–268Google Scholar
  106. Webb S (1946) Australian ambrosia fungi. (Leptographium lundbergii Lagerberg et Melin, and Endomycopsis spp. Dekker.). Proc R Soc Vic 57:57–80Google Scholar
  107. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–321Google Scholar
  108. Wingfield MJ (1985) Reclassification of Verticladiella based on conidial development. Trans Br Mycol Soc 85:81–93. doi: 10.1016/S0007-1536(85)80157-1 CrossRefGoogle Scholar
  109. Wingfield MJ, Gibbs JN (1991) Leptographium and Graphium species associated with pine-infesting bark beetles in England. Mycol Res 95:1257–1260. doi: 10.1016/S0953-7562(09)80570-4 CrossRefGoogle Scholar
  110. Wingfield MJ, Marasas WFO (1983) Some Verticicladiella species, including V. truncata sp. nov., associated with root diseases of pine in New Zealand and South Africa. Trans Br Mycol Soc 80:81–93. doi: 10.1016/S0007-1536(83)80005-9 CrossRefGoogle Scholar
  111. Wingfield MJ, Capretti P, Mackenzie M (1988) Leptographium spp. as root pathogens on conifers. An international perspective. In: Harrington TC, Cobb FW Jr (eds) Leptographium root diseases on conifers. APS Press, St Paul, pp 113–128Google Scholar
  112. Wingfield MJ, Seifert KA, Webber JF (1993) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS Press, St PaulGoogle Scholar
  113. Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol. doi: 10.1111/j.1364-3703.2011.00768.x PubMedGoogle Scholar
  114. Wright EF, Cain RF (1961) New species of the genus Ceratocystis. Can J Bot 39:1215–1230. doi: 10.1139/b61-106 CrossRefGoogle Scholar
  115. Yamaoka Y, Wingfield MJ, Takahashi I, Solheim H (1997) Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus f. japonicus in Japan. Mycol Res 101:1215–1227. doi: 10.1017/S0953756297003924 CrossRefGoogle Scholar
  116. Yamaoka Y, Wingfield MJ, Ohsawa M, Kuroda Y (1998) Ophiostomatoid fungi associated with Ips cembrae in Japan and their pathogenicity of Japanese larch. Mycosci 39:367–378. doi: 10.1007/BF02460897 CrossRefGoogle Scholar
  117. Yamaoka Y, Takahashi I, Iguchi K (2000) Virulence of ophiostomatoid fungi associated with the spruce bark beetle Ips typographus f. japonicus in Yezo spruce. J For Res 5:87–94. doi: 10.1007/BF02762525 CrossRefGoogle Scholar
  118. Yamaoka Y, Masuya H, Chung W-H, Goto H, To-Anun C, Tokumasu S, Zhou X, Wingfield M (2008) The teleomorph of Leptographium yunnanense, discovered in crosses among isolates from Thailand, China, and Japan. Mycosci 49:233–240. doi: 10.1007/s10267-008-0412-x CrossRefGoogle Scholar
  119. Yamaoka Y, Chung W-H, Masuya H, Hizai M (2009) Constant association of ophiostomatoid fungi with the bark beetle Ips subelongatus invading Japanese larch logs. Mycosci 50:165–172. doi: 10.1007/s10267-008-0468-7 CrossRefGoogle Scholar
  120. Zhao G (2005) [Two new species of Ceratocystis on Pinus massoniana staining wood] In Chinese with English abstract. J Nanjing Forestry University (Natural Sciences Edition) 29:115–118Google Scholar
  121. Zhou XD, Jacobs K, Morelet M, Ye H, Lieutier F, Wingfield MJ (2000) A new Leptographium species associated with Tomicus piniperda in south-western China. Mycosci 41:573–578. doi: 10.1007/BF02460923 CrossRefGoogle Scholar
  122. Zhou XD, De Beer ZW, Wingfield BD, Wingfield MJ (2001) Ophiostomatoid fungi associated with three pine-infesting bark beetles in South Africa. Sydowia 53:290–300Google Scholar
  123. Zhou XD, De Beer ZW, Ahumada R, Wingfield BD, Wingfield MJ (2004a) Ophiostoma and Ceratocystiopsis spp. associated with two pine-infesting bark beetles in Chile. Fungal Divers 15:261–274Google Scholar
  124. Zhou XD, De Beer ZW, Cibrián D, Winfield BD, Wingfield MJ (2004b) Characterization of Ophiostoma species associated with pine bark beetles from Mexico, including O. pulvinisporum sp. nov. Mycol Res 108:690–698. doi: 10.1017/S0953756204009918 PubMedCrossRefGoogle Scholar
  125. Zhou XD, De Beer ZW, Harrington TC, McNew D, Kirisits T, Wingfield MJ (2004c) Epitypification of Ophiostoma galeiformis and phylogeny of species in the O. galeiformis complex. Mycologia 96:1306–1315PubMedCrossRefGoogle Scholar
  126. Zhou XD, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277. doi: 10.3114/sim.55.1.75 PubMedCrossRefGoogle Scholar
  127. Zhou XD, Jacobs K, Kirisits T, Chhetri DB, Wingfield MJ (2008) Leptographium bhutanense sp. nov., associated with the root collar weevil Hylobitelus chenkupdorjii on Pinus wallichiana in Bhutan. Persoonia 21:1–8. doi: 10.3767/003158508X332435 PubMedCrossRefGoogle Scholar
  128. Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97. doi: 10.3114/sim.55.1.133 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Riikka Linnakoski
    • 1
    • 2
  • Z. Wilhelm de Beer
    • 3
  • Tuan A. Duong
    • 4
  • Pekka Niemelä
    • 1
  • Ari Pappinen
    • 2
  • Michael J. Wingfield
    • 4
  1. 1.Section of Biodiversity and Environmental Science, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Faculty of Science and Forestry, School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  3. 3.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  4. 4.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations