Antonie van Leeuwenhoek

, Volume 102, Issue 2, pp 307–317

Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes

  • Wan-Taek Im
  • Zi-Ye Hu
  • Kyoung-Ho Kim
  • Sung-Keun Rhee
  • Han Meng
  • Sung-Taik Lee
  • Zhe-Xue Quan
Original Paper

Abstract

Strain Gsoil 348T was isolated from a ginseng field soil sample by selecting micro-colonies from one-fifth strength modified R2A agar medium after a long incubation period. 16S rRNA gene sequence analysis indicated that the strain is related to members of the phylum Armatimonadetes (formerly called candidate phylum OP10). Strain Gsoil 348T is mesophilic, strictly aerobic, non-motile and rod-shaped. It only grows in low nutrient media. The major respiratory quinones are menaquinones MK-11 and MK-10, and the main fatty acids are iso-C15:0, iso-C17:0, C16:0 and C16:1ω11c. The G+C content is 61.4 mol%. The 16S rRNA gene sequences in public databases belonging to the phylum Armatimonadetes were clustered here into 6 groups. Five of these groups constituted a coherent cluster distinct from the sequences of other phyla in phylogenetic trees that were constructed using multiple-outgroup sequences from 49 different phyla. On the basis of polyphasic taxonomic analyses, it is proposed that strain Gsoil 348T (= KACC 14959T = JCM 17079T) should be placed in Fimbriimonas ginsengisoli gen. nov., sp. nov., as the cultured representative of the Fimbriimonadia class. nov., corresponding with Group 4 of the phylum Armatimonadetes.

Keywords

Armatimonadetes OP10 Phylogeny Novel class Fimbriimonadia 

Supplementary material

10482_2012_9739_MOESM1_ESM.doc (968 kb)
Supplementary material 1 (DOC 968 kb)

References

  1. An DS, Lee HG, Im WT, Liu OM, Lee ST (2007) Segetibacter koreensis gen. nov., sp nov., a novel member of the phylum Bacteroidetes, isolated from the soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 57:1828–1833PubMedCrossRefGoogle Scholar
  2. Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca RatonGoogle Scholar
  3. Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedGoogle Scholar
  4. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296PubMedCrossRefGoogle Scholar
  5. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885PubMedCrossRefGoogle Scholar
  6. Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744PubMedCrossRefGoogle Scholar
  7. Dalevi D, Hugenholtz P, Blackall LL (2001) A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data. Int J Syst Evol Microbiol 51:385–391PubMedGoogle Scholar
  8. Geissinger O, Herlemann DPR, Morschel E, Maier UG, Brune A (2009) The Ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 75:2831–2840PubMedCrossRefGoogle Scholar
  9. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedCrossRefGoogle Scholar
  10. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  11. Hugenholtz P, Goebel BM, Pace NR (1998a) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedGoogle Scholar
  12. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998b) Novel division level bacterial diversity in a yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  13. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215PubMedCrossRefGoogle Scholar
  14. Jumas-Bilak E, Roudiere L, Marchandin H (2009) Description of ‘Synergistetes’ phyl. nov and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59:1028–1035PubMedCrossRefGoogle Scholar
  15. Kim MK, Im WT, Ohta H, Lee M, Lee ST (2005) Sphingopyxis granuli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in alpha-4 subclass of the Proteobacteria. J Microbiol 43:152–157PubMedGoogle Scholar
  16. Komagata K, Suzuki K (1987) Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  17. Lee M, Ten LN, Lee HW, Oh HW, Im WT, Lee ST (2008) Sphingopyxis ginsengisoli sp nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58:2342–2347PubMedCrossRefGoogle Scholar
  18. Lee KCY, Dunfield PF, Morgan XC, Crowe MA, Houghton KM, Vyssotski M, Ryan JLJ, Lagutin K, McDonald IR, Stott MB (2011) Chthonomonas calidirosea gen. nov., sp nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. Int J Syst Evol Microbiol 61:2482–2490PubMedCrossRefGoogle Scholar
  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  20. Minnikin DE, Odonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  21. Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE et al (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11Google Scholar
  22. Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki K (2009) Caldisericum exile gen. nov., sp nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov and Caldisericia classis nov. Int J Syst Evol Microbiol 59:2894–2898PubMedCrossRefGoogle Scholar
  23. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576PubMedCrossRefGoogle Scholar
  24. Portillo MC, Gonzalez JM (2009) Members of the candidate division OP10 are spread in a variety of environments. World J Microbiol Biotechnol 25:347–353CrossRefGoogle Scholar
  25. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  26. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  27. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  29. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou SB, Alam M, Dunfield PF (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041PubMedCrossRefGoogle Scholar
  30. Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng XY, Hanada S, Mori K, Kamagata Y (2011) Armatimonas rosea gen. nov., sp nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 61:1442–1447PubMedCrossRefGoogle Scholar
  31. Ten LN, Im WT, Kim MK, Kang MS, Lee ST (2004) Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382PubMedCrossRefGoogle Scholar
  32. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167CrossRefGoogle Scholar
  33. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New YorkGoogle Scholar
  34. Widdel F, Kohring G, Mayer F (1983) Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294CrossRefGoogle Scholar
  35. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  36. Yoon MH, Im WT (2007) Flavisolibacter ginsengiterrae gen. nov., sp nov and Flavisolibacter ginsengisoli sp nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 57:1834–1839PubMedCrossRefGoogle Scholar
  37. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wan-Taek Im
    • 1
  • Zi-Ye Hu
    • 2
  • Kyoung-Ho Kim
    • 3
  • Sung-Keun Rhee
    • 4
  • Han Meng
    • 2
  • Sung-Taik Lee
    • 1
  • Zhe-Xue Quan
    • 2
  1. 1.Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Department of MicrobiologyPukyong National UniversityPusanKorea
  4. 4.Department of MicrobiologyChungbuk National UniversityCheongjuKorea

Personalised recommendations