Antonie van Leeuwenhoek

, Volume 102, Issue 2, pp 297–305 | Cite as

Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China

  • Hong Ming
  • Guo-Xing Nie
  • Hong-Chen Jiang
  • Tian-Tian Yu
  • En-Min Zhou
  • Hui-Gen Feng
  • Shu-Kun Tang
  • Wen-Jun Li
Original Paper


A novel cold-resistant bacterium, designated YIM 016T, was isolated from a peat bog sample collected from Mohe County, Heilongjiang Province, Northern China and its taxonomic position was investigated using a polyphasic approach. The strain was Gram-positive, aerobic, endospore-forming, motile and rod-shaped. Phylogenetic analyses based on the 16S rRNA gene sequence clearly revealed that strain YIM 016T is a member of the genus Paenibacillus. The strain is closely related to Paenibacillus alginolyticus DSM 5050T, Paenibacillus chondroitinus DSM 5051T and Paenibacillus pocheonensis Gsoil 1138T with similarities of 99.0 %, 97.0 % and 96.3 %, respectively. Meanwhile, the low DNA–DNA relatedness levels between strain YIM 016T and its closely related phylogenetic neighbours demonstrated that this isolate represents a new genomic species in the genus Paenibacillus. Phenotypic and chemotaxonomic tests showed that growth of strain YIM 016T occurred at 4–37 °C, pH 6.0–8.0 and with a NaCl tolerance up to 0.5 % (w/v). The peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid. The whole-cell hydrolysates mainly contained glucose, galactose and ribose. The predominant menaquinone was MK-7 and the major fatty acids were anteiso-C15:0 and iso-C16:0. The DNA G+C content of strain YIM 016T was 51.7 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain YIM 016T could be clearly distinguished from other species of the genus Paenibacillus. It is therefore concluded that strain YIM 016T represents a novel species in the genus Paenibacillus, for which the name Paenibacillus frigoriresistens sp. nov. is proposed. The type strain is YIM 016T (= CCTCC AB 2011150T = JCM 18141T).


Paenibacillus frigoriresistens sp. nov. 16S rRNA gene Polyphasic taxonomy 



The authors are grateful to Prof. Dr. Hans-Peter Klenk (DSMZ) for his kind providing reference type strains and Prof. Jean Euzéby for the Latin construction of the species name. This research was supported by Science and Technology Innovation Talents Program in Universities of Henan Province of China (HASTIT, No. 2010HASTIT020), Key Technologies R & D Program of Henan Province of China (112102310335,112102210106), and Doctoral Fund of Ministry of Education of China (20100022120009). W-J. Li was also supported by ‘Hundred Talents Program’ of the Chinese Academy of Sciences.

Supplementary material

10482_2012_9738_MOESM1_ESM.docx (457 kb)
Supplementary material 1 (DOCX 457 kb)
10482_2012_9738_MOESM2_ESM.ppt (797 kb)
Supplementary material 2 (PPT 797 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260PubMedCrossRefGoogle Scholar
  3. Baik KS, Choe HN, Park SC, Kim EM, Seong CN (2011) Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 61:2763–2768PubMedCrossRefGoogle Scholar
  4. Barrow GI, Feltham RKA (1993) Cowan and Steel’ manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia LMP (2010) Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60:128–133PubMedCrossRefGoogle Scholar
  6. Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedGoogle Scholar
  7. Choi KK, Park CW, Kim SY, Lyoo WS, Lee SH, Lee JW (2004) Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paeniblacillus amylolyticus KCCM 10508 in dyeing wastewater. J Microbiol Biotechnol 14:1009–1013Google Scholar
  8. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M (2000) DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102PubMedCrossRefGoogle Scholar
  9. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  10. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230PubMedCrossRefGoogle Scholar
  11. De Vos P, Ludwig W, Schleifer KH, Whitman WB (2010) Paenibacillaceae fam. nov. in list of new names and new combinations previously effectively, but not validly, published, validation list no. 132. Int J Syst Evol Microbiol 60:469–472CrossRefGoogle Scholar
  12. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  13. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789CrossRefGoogle Scholar
  15. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  16. Girardin H, Albagnac C, Dargaignaratz C, Nguyen-The C, Carlin F (2002) Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum. J Food Prot 65:806–813PubMedGoogle Scholar
  17. Guindon S, Gascuel O (2003) A simple, fast, and accurae algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704PubMedCrossRefGoogle Scholar
  18. He L, Li W, Huang Y, Wang LM, Liu ZH, Lanoot BJ, Vancanneyt M, Swings J (2005) Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:1939–1944PubMedCrossRefGoogle Scholar
  19. Heyndrickx M, Vandemeulebroecke K, Scheldeman P, Kersters K, De Vos P, Logan NA, Aziz AM, Ali N, Berkeley RCW (1996) A polyphasic reassessment of the genus Paenibacillus, Reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int J Syst Bacteriol 46:998–1003Google Scholar
  20. Hong YY, Ma YC, Zhou YG, Gao F, Liu HC, Chen SF (2009) Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 59:2656–2661PubMedCrossRefGoogle Scholar
  21. Jin HJ, Lv J, Chen SF (2011) Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 61:767–771PubMedCrossRefGoogle Scholar
  22. Kämpfer P, Falsen E, Lodders N, Martin K, Kassmannhuber J, Busse HJ (2011) Paenibacillus chartarius sp. nov. isolated from a papermill. Int J Syst Evol Microbiol 59:2656–2661Google Scholar
  23. Khianngam S, Tanasupawat S, Lee JS, Lee KC, Akaracharanya A (2009) Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov. and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:130–140PubMedCrossRefGoogle Scholar
  24. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC, Lee JS (2011) Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 61:160–164PubMedCrossRefGoogle Scholar
  25. Kim DS, Bae CY, Jeon JJ, Chun SJ, Oh HW, Hong SG, Baek KS, Moon EY, Bae KS (2004) Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54:2031–2035PubMedCrossRefGoogle Scholar
  26. Kim kk, Lee KC, Yu H, Ryoo S, Park Y, Lee JS (2010) Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol 60:2371–2376PubMedCrossRefGoogle Scholar
  27. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  28. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  29. Kishore KH, Begum Z, Pathan AAK, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the himalayas,India. Int J Syst Evol Microbiol 60:1909–1913PubMedCrossRefGoogle Scholar
  30. Konishi J, Maruhashi K (2003) 2-(2’-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl Microbiol Biotechnol 62:356–361PubMedCrossRefGoogle Scholar
  31. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the Oxidase Reaction. Nature 178:703Google Scholar
  32. Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol 49:2–10CrossRefGoogle Scholar
  33. Leifson E (1960) Atlas of bacterial flagellation. Academic Press, LondonGoogle Scholar
  34. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428PubMedCrossRefGoogle Scholar
  35. MacFaddin JF (1980) Biochemical tests for identificat bacteria, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  36. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  37. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  39. Moon JC, Jung YJ, Jung JH, Jung HS, Cheong YR, Jeon CO, Lee KO, Lee SY (2011) Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61:2753–2757PubMedCrossRefGoogle Scholar
  40. Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K (ed) Current protocols in molecular biology. Wiley, New York, p 2–11Google Scholar
  41. Nie GX, Ming H, Li S, Zhou EM, Cheng J, Tang X, Feng HG, Tang SK, Li WJ (2012) Amycolatopsis dongchuanensis sp. nov., a novel actinobacterium isolated from dry-hot valley in Yunnan, south-west China. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.038125-0 Google Scholar
  42. Nielsen P, Sorensen J (1997) Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192CrossRefGoogle Scholar
  43. Park MJ, Kim HB, An DS, Yang HC, Oh ST, Chung HJ, Yang DC (2007) Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 57:146–150PubMedCrossRefGoogle Scholar
  44. Park DS, Jeong WJ, Lee KH, Oh HW, Kim BC, Bae KS, Park HY (2009) Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis. Int J Syst Evol Microbiol 59:1342–1347PubMedCrossRefGoogle Scholar
  45. Roux V, Fenner L, Raoult D (2008) Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 58:682–687PubMedCrossRefGoogle Scholar
  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  47. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  48. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2005) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Bacteriol 54:885–891Google Scholar
  49. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156CrossRefGoogle Scholar
  50. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298PubMedCrossRefGoogle Scholar
  51. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C., pp 607–654Google Scholar
  52. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  53. Takeda M, Suzuki L, Koizumi JI (2005) Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 55:737–741PubMedCrossRefGoogle Scholar
  54. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaqui-none mixtures by high performance liquid chromatography. J Appl Bacteriol 300:31–36Google Scholar
  55. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  56. Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032PubMedCrossRefGoogle Scholar
  57. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  58. Traiwan J, Park MH, Kim W (2011) Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. Int J Syst Evol Microbiol 61:670–673PubMedCrossRefGoogle Scholar
  59. Von Der Weid I, Alviano DS, Santos AL, Soares RM, Alviano CS, Seldin L (2003) Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hong Ming
    • 1
    • 3
  • Guo-Xing Nie
    • 2
  • Hong-Chen Jiang
    • 4
  • Tian-Tian Yu
    • 3
  • En-Min Zhou
    • 3
  • Hui-Gen Feng
    • 1
  • Shu-Kun Tang
    • 3
  • Wen-Jun Li
    • 3
    • 5
  1. 1.Department of Life Sciences and TechnologyXinxiang Medical UniversityXinxiangPeople’s Republic of China
  2. 2.College of Life SciencesHenan Normal UniversityXinxiangPeople’s Republic of China
  3. 3.Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China
  4. 4.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanPeople’s Republic of China
  5. 5.Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of ScienceXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÜrümqiPeople’s Republic of China

Personalised recommendations