Antonie van Leeuwenhoek

, Volume 102, Issue 1, pp 73–81 | Cite as

Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil

  • Aline Spindler
  • Letícia Müner Otton
  • Daiane Bopp Fuentefria
  • Gertrudes Corção
Original Paper

Abstract

The aim of the present study was to investigate the resistance profile, to detect the presence of beta-lactam resistance genes, phenotypic expression of efflux pump systems and class 1 integrons in Pseudomonas spp. strains obtained from untreated hospital effluents. Effluent samples were collected from four hospitals in Porto Alegre, RS, Brazil. Pseudomonas were isolated on MacConkey agar plates and the identification was confirmed by 16S rRNA PCR and biochemical tests. Susceptibility testing was determined by disk-diffusion method using 11 different beta-lactams and MIC assays were performed on isolates resistant to imipenem and ceftazidime. The beta-lactamase genes blaIMP, blaVIM, blaSPM-1, blaOXA-23-like, blaOXA-24-like, blaOXA-51-like and the intl1 gene from class 1 integron were analysed by PCR. One hundred and twenty-four isolates were recovered and the most common species was Pseudomonas pseudoalcaligenes. The resistance found among the isolates was considered high, 62 (50%) isolates were multiresistant. No isolate carrying the beta-lactamase genes tested was found among the strains. Seven isolates showed reduction of MIC for imipenem and ceftazidime in the presence of cyanide m-chlorophenylhydrazone, indicating the hyper expression of efflux pumps. From the 124 isolates, 52 (41.9%) were identified as carrying the class 1 integron gene, intI1. Untreated hospital effluents could be a source of environmental contamination due to discharge of antimicrobial resistant bacteria which can carry integron class 1 and act as a reservoir of resistance genes and have efflux pump systems.

Keywords

Pseudomonas spp. Beta-lactams resistance Hospital sewage Integrons 

Notes

Acknowledgments

This research was supported by CAPES (Brazilian Government Supporting Agency) and Rio Grande do Sul State Supporting Agency FAPERGS. The authors would like to thanks Dr. Ana Cristina Gales who kindly provided the strains used as positive controls in this study. The authors are also grateful to Clarissa Branco Haas, Lyvia Moreira de Oliveira and Gabriela Rosa da Cunha for the technical assistance.

References

  1. Almuzara M, Radice M, de Gárate N, Kossman A, Cuirolo A, Santella G, Famiglietti A, Gutkind G, Vay V (2007) VIM-2-producing Pseudomonas putida, Buenos Aires. Emerg Infect Dis 13:668–669PubMedCrossRefGoogle Scholar
  2. Bogaerts P, Huang TD, Rodriguez-Villalobos H, Bauraing C, Deplano A, Struelens MJ, Glupczynski Y (2008) Nosocomial infections caused by multidrug-resistant Pseudomonas putida isolates producing VIM-2 and VIM-4 metallo-beta-lactamases. J Antimicrob Chemother 61:749–751PubMedCrossRefGoogle Scholar
  3. Clinical and Laboratory Standards Institute/NCCLS (2005) Performance standards for antimicrobial susceptibility testing; 15th informational supplement. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  4. Empel J, Filczak K, Mrowka A, Hryniewicz W, Livermore DM, Gniadkowski M (2007) Outbreak of Pseudomonas aeruginosa with PER-1 extended-spectrum beta-lactamase in Warsaw, Poland; further evidence for an international clonal complex. J Clin Microbiol 45:997–1007CrossRefGoogle Scholar
  5. Ferreira AE, Marchetti DP, Oliveira LM, Gusatti CS, Fuentefria DB, Corção G (2011) Presence of oxa-23-producing isolates of Acinetobacter baumannii in wastewater from hospitals in Southern Brazil. Microb Drug Resist 17(2):221–227PubMedCrossRefGoogle Scholar
  6. Fonseca EL, Vieira VV, Cipriano R, Vicente ACP (2005) Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in the Amazon region, Brazil. FEMS Immunol Med Microbiol 44:303–309PubMedCrossRefGoogle Scholar
  7. Fuentefria DB, Ferreira, Gräf T, Corção G (2008) Pseudomonas aeruginosa: disseminação de resistência antimicrobiana em efluente hospitalar e água superficial. Rev Soc Bras Med Trop 41:470–473Google Scholar
  8. Fuentefria DB, Ferreira AE, Gräf T, Corção G (2009) Spread of metallo-beta-lactamases: screening reveals the presence of a bla SPM-1 gene in hospital sewage in southern Brazil. Braz J Microbiol 40:82–85CrossRefGoogle Scholar
  9. Fuentefria DB, Ferreira AE, Corção G (2011) Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: Are they genetically related? J Environ Manag 92:250–255CrossRefGoogle Scholar
  10. Garrity GM (1984) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  11. Gräf T, Fuentefria DB, Corção G (2008) Occurrence of multiresistant strains of Pseudomonas aeruginosa producing metallo-b-lactamase bla SPM-1 in clinical samples. Rev Soc Brasil Med Trop 41:306–308Google Scholar
  12. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070PubMedCrossRefGoogle Scholar
  13. Henriques IS, Fonseca F, Alvesa A, Saavedra MJ, Correia A (2006) Occurrence and diversity of integrons and beta-lactamase genes among ampicillin-resistant isolates from estuarine waters. Res Microbiol 157:938–947PubMedCrossRefGoogle Scholar
  14. Hsueh PR, Teng LJ, Pan HJ, Chen YC, Sun CC, Ho SW, Luh KT (1998) Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J Clin Microbiol 36:2914–2917PubMedGoogle Scholar
  15. Jeannot K, Elsen S, Kohler T, Attree I, van Delden C, Plesiat P (2008) Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the mexCD-oprJ efflux pump. Antimicrob Agents Chemother 52:2455–2462PubMedCrossRefGoogle Scholar
  16. Kim IS, Lee NY, Ki CS, Oh WS, Peck KR, Song JH (2005) Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-beta-lactamase producers in a Korean hospital. Microb Drug Resist 11:355–359PubMedCrossRefGoogle Scholar
  17. Koh TH, Wang GCY, Sng LH (2004) IMP-1 and a novel metallo-beta-lactamase, VIM-6, in fluorescent Pseudomonads isolated in Singapore. Antimicrob Agents Chemother 48:2334–2336PubMedCrossRefGoogle Scholar
  18. Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z (2009) Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 11:1506–1517Google Scholar
  19. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis 34:634–640PubMedCrossRefGoogle Scholar
  20. Livermore DM, Winstanley TG, Shannon KP (2004) Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J Antimicrob Chemother 48:87–102CrossRefGoogle Scholar
  21. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedCrossRefGoogle Scholar
  22. Martinez JL, Sanchez MB, Solano LM, Hernandez A, Garmendia L, Fajardo A, Ortega CA (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449PubMedCrossRefGoogle Scholar
  23. Meirelles-Pereira F, Pereira MAS, Silva MCG (2002) Ecological aspects of the antimicrobial resistance in bacteria of importance to human infections. Braz J Microbiol 33:287–293CrossRefGoogle Scholar
  24. Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25:1096–1098PubMedCrossRefGoogle Scholar
  25. Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43:S43–S48PubMedCrossRefGoogle Scholar
  26. Pellegrini C, Mercuri PS, Celenza G, Galleni M, Segatore B, Sacchetti E, Volpe R, Amicosante G, Perilli M (2009) Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. J Antimicrob Chemother 63:901–908PubMedCrossRefGoogle Scholar
  27. Poirel I, Carrër A, Pitout JD, Nordmann P (2009) Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antimicrob Agents Chemother 53:2492–2498PubMedCrossRefGoogle Scholar
  28. Poole K (2005) Efflux-mediated antimicrobial resistance J Antimicrob Chemother 56:20–51Google Scholar
  29. Prado T, Pereira WC, Silva DM (2008) Detection of extended-spectrum-β-lactamase-producing Klebsiella pneumoniae in effluents and sludge from a hospital sewage treatment plant. Lett Appl Microbiol 46:136–141PubMedGoogle Scholar
  30. Quinteira S, Ferreira H, Peixe L (2005) First isolation of bla VIM-2 in an environmental isolate of Pseudomonas pseudoalcaligenes. Antimicrob Agents Chemother 49:2140–2141PubMedCrossRefGoogle Scholar
  31. Roe MT, Vega E, Pillai SD (2003) Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation water and sediments. Emerg Infect Dis 9:822–829PubMedGoogle Scholar
  32. Sandvang D, Diggle M, Platt DJ (2002) Translocation of integron-associated resistance in a natural system: acquisition of resistance determinants by Inc P and Inc W plasmids from Salmonella enterica Typhimurium DT104. Microb Drug Res 8:151–160CrossRefGoogle Scholar
  33. Sekiguchi JI, Asagi T, Miyoshi-Akiyama T, Kasai A, Mizuguchi Y, Araake M, Fujino T, Kikuchi H, Sasaki S, Watari H, Kojima T, Miki H, Kanemitsu K, Kunishima K, Kikuchi Y, Kaku M, Yoshikura H, Kuratsuji T, Kirikae T (2007) Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. J Clin Microbiol 45:979–989PubMedCrossRefGoogle Scholar
  34. Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 42:165–175PubMedCrossRefGoogle Scholar
  35. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079PubMedCrossRefGoogle Scholar
  36. Strateva T, Yordanov D (2009) Pseudomonas aeruginosa—a phenomenon of bacterial resistance. J Med Microbiol 58:1133–1148PubMedCrossRefGoogle Scholar
  37. Tuméo E, Gbaguidi-Haore H, Patry I, Bertrand X, Thouverez M, Talon D (2008) Are antibiotic-resistant Pseudomonas aeruginosa isolated from hospitalized patients recovered in the hospital effluents? Int J Hyg Environ Health 21:200–204CrossRefGoogle Scholar
  38. Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Metallo-β-lactamases: The quiet before the storm? Clin Microbiol Rev 18:306–325PubMedCrossRefGoogle Scholar
  39. White PA, McIver CJ, Rawlinson WD (2001) Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45:2658–2661PubMedCrossRefGoogle Scholar
  40. Wolter DJ, Schmidtke AJ, Hanson ND, Lister PD (2007) Increased expression of ampC in Pseudomonas aeruginosa mutants selected with ciprofloxacin. Antimicrob Agents Chemother 51:2997–3000PubMedCrossRefGoogle Scholar
  41. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353PubMedCrossRefGoogle Scholar
  42. Wright MS, Austin CB, Lindell AH, Stepanauskas R, Stokes HW, McArthur JV (2008) Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. Int Soc Microb Ecol J J 2:417–428Google Scholar
  43. Yang CM, Lin MF, Liao PC, Yeh HW, Chang BV, Tang TK, Cheng C, Sung CH, Liou ML (2009) Comparison of antimicrobial resistance patterns between clinical and sewage isolates in a regional hospital in Taiwan. Lett Appl Microbiol 48:560–565PubMedCrossRefGoogle Scholar
  44. Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL (2005) Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-beta-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother 56:1148–1151PubMedCrossRefGoogle Scholar
  45. Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P (2007) In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system mexA-mexB-oprM. Antimicrob Agents Chemother 43:287–291Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Aline Spindler
    • 1
  • Letícia Müner Otton
    • 1
  • Daiane Bopp Fuentefria
    • 2
  • Gertrudes Corção
    • 1
  1. 1.Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Clinical Pathology Laboratory, São Vicente de Paulo HospitalGRUPO SANIPasso FundoBrazil

Personalised recommendations