Antonie van Leeuwenhoek

, Volume 101, Issue 4, pp 845–857 | Cite as

Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia

  • Ines Boujelben
  • María Gomariz
  • Manuel Martínez-GarcíaEmail author
  • Fernando Santos
  • Arantxa Peña
  • Cristina López
  • Josefa Antón
  • Sami Maalej
Original Paper


The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of “species” during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.


Solar saltern Hypersaline environment Environmental factors Prokaryotic dynamics DGGE FISH Haloquadratum Bacteroidetes 



This work was funded by projects A/6679/06 from the Spanish Agency for International Cooperation (AECI) and CGL2009-12651-C02-01 from the Spanish Ministry of Science and Innovation (MICINN). We also wish to acknowledge the Tunisian COTUSAL salt company in Sfax for allowing members of our research team to access to the saltern.

Supplementary material

10482_2012_9701_MOESM1_ESM.doc (526 kb)
Supplementary material 1 (DOC 524 kb)


  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  3. Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523PubMedCrossRefGoogle Scholar
  4. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedCrossRefGoogle Scholar
  5. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber., gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  6. Antón J, Peña A, Santos F, Martínez-García M, Schmitt-Kopplin P, Rosselló-Mora R (2008) Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Syst 4:2CrossRefGoogle Scholar
  7. Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518PubMedCrossRefGoogle Scholar
  8. Benlloch S, Acinas SG, Martínez-Murcia AJ, Rodríguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31CrossRefGoogle Scholar
  9. Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  10. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicate that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedCrossRefGoogle Scholar
  11. Casamayor EO, Massana R, Benlloch S, Øvreås L, Diez B, Goddard VJ, Gasol JM, Joint I, Rodriguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348PubMedCrossRefGoogle Scholar
  12. Clementino MM, Vieira RP, Cardoso AM, Nascimento APA, Silveira CB, Riva TC, Gonzalez ASM, Paranhos R, Albano RM, Ventosa A, Martins OB (2008) Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles 12:595–604PubMedCrossRefGoogle Scholar
  13. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444PubMedCrossRefGoogle Scholar
  14. Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial diversity. Microbiol Ecol 51:65–82CrossRefGoogle Scholar
  15. Elloumi J, Carrias JF, Ayadi H, Sime-Ngando T, Bouaïn A (2009) Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Estuar Coast Shelf Sci 81:19–26CrossRefGoogle Scholar
  16. Gasol JM, Zweifel UL, Peters F, Fuhrman JH, Hagström A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483PubMedGoogle Scholar
  17. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, Thane Papke R, Stepanauskas R, Rodruiguez-Brito B, Rodruiguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135PubMedCrossRefGoogle Scholar
  18. Henriques IS, Alves A, Tacão M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci 68:139–148CrossRefGoogle Scholar
  19. Janse I, Bok J, Zwart G (2004) A simple remedy against artificial double bands in denaturing gradient gel electrophoresis. J Microbiol Methods 57:279–281PubMedCrossRefGoogle Scholar
  20. Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845PubMedCrossRefGoogle Scholar
  21. Jongman RH, ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge 299CrossRefGoogle Scholar
  22. Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M (2004) Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic lake Kaiike (Japan), as determined by 16S rDNA-based analysis, and related to physicochemical gradients. Environ Microbiol 6:622–637PubMedCrossRefGoogle Scholar
  23. Lebaron P, Servais P, Baudoux AC, Bourrain M, Courties C, Parthuisot N (2002) Variation of bacterial specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquat Microbiol Ecol 28:131–140CrossRefGoogle Scholar
  24. Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55PubMedGoogle Scholar
  25. Martínez-García M, Díaz-Valdés M, Antón J (2010) Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians. FEMS Microbiol Ecol 71:387–398PubMedCrossRefGoogle Scholar
  26. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895PubMedCrossRefGoogle Scholar
  27. Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis forcomplex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:3518–3525PubMedGoogle Scholar
  28. Mutlu M, Martínez-García M, Santos F, Peña A, Guven K, Antón J (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483PubMedCrossRefGoogle Scholar
  29. Muyzer G, De Waal EC, Uitterrlinden AG (1993) Profiling in complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  30. Muyzer G, Hottenträger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, Van Elsas JD, De Brujn F (eds) Molecular microbial ecology manual. Kluwer Academic, Dordrecht, pp 1–23Google Scholar
  31. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedGoogle Scholar
  32. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2PubMedGoogle Scholar
  33. Øvreås L, Daae FL, Torsvik V, Rodrıguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301PubMedCrossRefGoogle Scholar
  34. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760PubMedCrossRefGoogle Scholar
  35. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  36. Pernthaler A, Pernthaler J, Amann R (2004) Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. Mol Microb Ecol Manual 11:711–726Google Scholar
  37. Rodriguez-Brito B, Li L, Wegley L et al (2010) Viral and microbial community dynamics in four aquatic environments. ISME Journal 4:739–751PubMedCrossRefGoogle Scholar
  38. Rodríguez-Valera F, Acinas SG, Antón J (1999) Contribution of molecular techniques to the study of microbial diversity in hypersaline environments. In: Oren A (ed) Microbiology and biochemistry of hypersaline environments. CRC Press, Boca Ratón, pp 27–38Google Scholar
  39. Rosselló-Mora R, Lee N, Antón J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413PubMedCrossRefGoogle Scholar
  40. Santos F, Peña A, Nogales B, Soria-Soria E, García Del Cura MA, González-Martín JA, Antón J (2010) Bacterial diversity in dry modern freshwater stromatolites from ruidera pools natural park, Spain. Syst Appl Microbiol 33:209–221PubMedCrossRefGoogle Scholar
  41. Schäfer HL, Bernard L, Courties C, Lebaron F, Servais P, Pukall R, Stackebrandt E, Troussellier M, Guindulain T, Vives-Rego J, Muyzer G (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiol Ecol 34:243–253PubMedCrossRefGoogle Scholar
  42. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedGoogle Scholar
  43. Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365PubMedCrossRefGoogle Scholar
  44. Trigui H, Masmoudi S, Brochier-Armanet C, Barani A, Grégori G, Denis M, Dukan S, Maalej S (2011) Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles. doi: 10.1007/s00792-011-0364-5 PubMedGoogle Scholar
  45. Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Anderson G, Pyceno Y, Bourtzis K (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 159:609–627PubMedCrossRefGoogle Scholar
  46. Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ines Boujelben
    • 1
    • 2
  • María Gomariz
    • 1
    • 3
  • Manuel Martínez-García
    • 1
    Email author
  • Fernando Santos
    • 1
  • Arantxa Peña
    • 1
  • Cristina López
    • 1
  • Josefa Antón
    • 1
  • Sami Maalej
    • 2
  1. 1.Departamento de Fisiología, Genética y MicrobiologíaUniversidad de AlicanteAlicanteSpain
  2. 2.Département des Sciences de la Vie, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  3. 3.Departamento de Microbiología y Producción VegetalUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations