Antonie van Leeuwenhoek

, Volume 101, Issue 1, pp 73–104 | Cite as

Phylogenetic study of the species within the family Streptomycetaceae

  • D. P. Labeda
  • M. Goodfellow
  • R. Brown
  • A. C. Ward
  • B. Lanoot
  • M. Vanncanneyt
  • J. Swings
  • S.-B. Kim
  • Z. Liu
  • J. Chun
  • T. Tamura
  • A. Oguchi
  • T. Kikuchi
  • H. Kikuchi
  • T. Nishii
  • K. Tsuji
  • Y. Yamaguchi
  • A. Tase
  • M. Takahashi
  • T. Sakane
  • K. I. Suzuki
  • K. Hatano
Original Paper

Abstract

Species of the genus Streptomyces, which constitute the vast majority of taxa within the family Streptomycetaceae, are a predominant component of the microbial population in soils throughout the world and have been the subject of extensive isolation and screening efforts over the years because they are a major source of commercially and medically important secondary metabolites. Taxonomic characterization of Streptomyces strains has been a challenge due to the large number of described species, greater than any other microbial genus, resulting from academic and industrial activities. The methods used for characterization have evolved through several phases over the years from those based largely on morphological observations, to subsequent classifications based on numerical taxonomic analyses of standardized sets of phenotypic characters and, most recently, to the use of molecular phylogenetic analyses of gene sequences. The present phylogenetic study examines almost all described species (615 taxa) within the family Streptomycetaceae based on 16S rRNA gene sequences and illustrates the species diversity within this family, which is observed to contain 130 statistically supported clades, as well as many unsupported and single member clusters. Many of the observed clades are consistent with earlier morphological and numerical taxonomic studies, but it is apparent that insufficient variation is present in the 16S rRNA gene sequence within the species of this family to permit bootstrap-supported resolution of relationships between many of the individual clusters.

Keywords

Actinobacteria Systematics Streptomycetales Actinomycetes 

Notes

Acknowledgments

The able technical assistance of E. N. Hoekstra for isolation of genomic DNA and determination of the sequences is gratefully acknowledged. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Supplementary material

10482_2011_9656_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 49 kb)

References

  1. A co-operative study, Gottlieb D (1961) An evaluation of criteria and procedures used in the description and characterization of the streptomycetes. Appl Microbiol 9:55–65PubMedGoogle Scholar
  2. Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814PubMedCrossRefGoogle Scholar
  3. Bouchek-Mechiche K, Gardan L, Andrivon D, Normand P (2006) Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. Int J Syst Evol Microbiol 56:2771–2776PubMedCrossRefGoogle Scholar
  4. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245PubMedCrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. Felsenstein J (1993) Phylogeny inference package (PHYLIP) version 3.5. University of Washington, SeattleGoogle Scholar
  7. Ferguson EV, Ward AC, Sanglier J-J, Goodfellow M (1997) Evaluation of Streptomyces species-groups by pyrolysis mass spectrometry. Zbl Bakt 285:169–181Google Scholar
  8. Goodfellow M, Williams ST, Alderson G (1986a) Transfer of Elytrosporangium brasiliense Falcão de Morais et al., Elytrosporangium spirale Falcão de Morais et al., Microellobosporia flava Cross et al., Microellobosporia grisea (Konev et al.) Pridham and Microellobosporia violacea (Tsyganov et al.) Pridham to the genus Streptomyces, with emended descriptions of the species. Syst Appl Microbiol 8:48–54CrossRefGoogle Scholar
  9. Goodfellow M, Williams ST, Alderson G (1986b) Transfer of Chainia species to the genus Streptomyces with emended description of species. Syst Appl Microbiol 8:55–60CrossRefGoogle Scholar
  10. Goodfellow M, Williams ST, Alderson G (1986c) Transfer of Actinosporangium violaceum Krasil’nikov and Yuan, Actinosporangium vitaminophilum Shomura et al. and Actinopycridium caeruleum Krasil’nikov to the genus Streptomyces, with emended descriptions of the species. Syst Appl Microbiol 8:61–64CrossRefGoogle Scholar
  11. Goodfellow M, Williams ST, Alderson G (1986d) Transfer of Kitasatoa purpurea Matsumae and Hata to the genus Streptomyces as Streptomyces purpureus comb. nov. Syst Appl Microbiol 8:65–66CrossRefGoogle Scholar
  12. Goodfellow M, Ferguson EV, Sanglier J-J (1992) Numerical classification and identification of Streptomyces species—a review. Gene 115:225–233PubMedCrossRefGoogle Scholar
  13. Goodfellow M, Kumar Y, Labeda DP, Sembiring L (2007) The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek 92:173–197PubMedCrossRefGoogle Scholar
  14. Gottlieb D (1963) Recommendations for description of some Actinomycetales appearing in patent applications. Int Bull Bacteriol Nomencl Taxon 13:159–160CrossRefGoogle Scholar
  15. Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159PubMedCrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Kämpfer P (2011) Genus Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370, emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen, 1992, 159. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki KE, Ludwig W, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn, volume 5 Springer, USA (in press)Google Scholar
  18. Kämpfer P, Kroppenstedt RM, Dott W (1991) A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. J Gen Microbiol 137:1831–1891Google Scholar
  19. Kim D, Chun J, Sahin N, Hah YC, Goodfellow M (1996) Analysis of thermophilic clades within the genus Streptomyces by 16S ribosomal DNA sequence comparisons. Int J Syst Bacteriol 46:581–587CrossRefGoogle Scholar
  20. Kim SB, Lonsdale JT, Seong C-N, Goodfellow M (2003) Streptacidiphilus gen. nov., a home for acidiphilic actinomycetes with a wall chemotype 1 and emendation of the family Streptomycetaceae (Waksman & Henrici 1943 emend Rainey et al. 1997) Antonie van Leeuwenhoek 83:107–116Google Scholar
  21. Krainsky A (1914) Die Aktinomyceten und ihren Bedeutung in der Natur. Zentrlbl Bakteriol Parasiterikd Infektionkr Hyg II Abt 41:649–688Google Scholar
  22. Kumar Y, Goodfellow M (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: Streptomyces castelarensis comb. nov., S. himastatinicus sp. nov., S. mordarskii sp. nov., S. rapamycinicus sp. nov. and S. ruanii sp. nov. Int J Syst Evol Microbiol 58:1369–1378PubMedCrossRefGoogle Scholar
  23. Kumar Y, Goodfellow M (2010) Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces augustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov. Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. Int J Syst Evol Microbiol 60:769–775PubMedCrossRefGoogle Scholar
  24. Küster E (1959) Outline of a comparative study of criteria used in characterization of the actinomycetes. Int Bull Bacteriol Nomencl Taxon 9:97–104CrossRefGoogle Scholar
  25. Labeda DP (1992) DNA:DNA hybridization in the systematics of Streptomyces. Gene 115:249–253PubMedCrossRefGoogle Scholar
  26. Labeda DP (1993) DNA:DNA relatedness among strains of the Streptomyces lavendulae phenotypic cluster group. Int J Syst Evol Microbiol 53:822–825Google Scholar
  27. Labeda DP (1998) DNA:DNA relatedness among the Streptomyces fulvissimus and Streptomyces griseoviridis phenotypic cluster groups. Int J Syst Evol Microbiol 48:829–832Google Scholar
  28. Labeda DP (2011) Multilocus sequence analysis of phytopathogenic Streptomyces species. Int J Syst Evol Microbiol 61:2379–2383CrossRefGoogle Scholar
  29. Labeda D, Kroppenstedt RM (2000) Phylogenetic analysis of Saccharothrix and related taxa: proposal for Actinosynnemataceae fam. nov. Int J Syst Evol Microbiol 50:331–336PubMedCrossRefGoogle Scholar
  30. Labeda DP, Lyons AJ (1991a) Deoxyribonucleic acid relatedness among species of the “Streptomyces cyaneus” cluster. Syst Appl Microbiol 14:158–164Google Scholar
  31. Labeda DP, Lyons AJ (1991b) The Streptomyces violaceusniger cluster is heterogeneous in DNA relatedness among strains: emendation of the descriptions of S. violaceusniger and Streptomyces hygroscopicus. Int J Syst Bacteriol 41:398–401CrossRefGoogle Scholar
  32. Labeda DP, Price NP, Kroppenstedt RM, Donahue JM, Williams NM, Sells SF (2009) Streptomyces atriruber sp. nov. and Streptomyces silaceus sp. nov., two novel species of equine origin. Int J Syst Evol Microbiol 59:2899–2903PubMedCrossRefGoogle Scholar
  33. Lu Z, Liu Z, Wang L, Zhang Y, Qi W, Goodfellow M (2001) Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp. nov., novel actinomycetes from soil. Int J Syst Evol Microbiol 51:319–325PubMedGoogle Scholar
  34. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Yadhukumar Lai, Steppi S et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  35. Manchester L, Pot B, Kersters K, Goodfellow M (1990) Classification of Streptomyces and Streptoverticillium species by numerical analysis of electrophoretic protein patters. Syst Appl Microbiol 13:333–337Google Scholar
  36. Mordarski M, Goodfellow M, Williams ST, Sneath PHA (1986) Evaluation of species groups in the genus Streptomyces. In: Szabó G, Biró S, Goodfellow M (eds) Biological, biochemical and biomedical aspects of actinomycetes. Akademiai Kiadó, Budapest, pp 517–525Google Scholar
  37. Ōmura S, Takahashi Y, Iwai Y, Tamaka H (1982) Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 35:1013–1019PubMedGoogle Scholar
  38. Park MS, Jung SR, Lee MS, Kim KO, Do JO, Lee KH, Kim SB, Bae KS (2005) Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J Microbiol 43:219–227PubMedGoogle Scholar
  39. Pridham TG, Tresner HD (1974) Genus I. Streptomyces Waksman and Henrici 1943, 339. In: Buchanan RE, Gibbons NE (eds) Bergey’s Manual of Determinative Bacteriology, 8th edn edn. Williams and Wilkins Company, Baltimore, pp 748–829Google Scholar
  40. Ridell M, Wallerstrom G, Williams ST (1986) Immunodiffusion analysis of phenetically defined strains of Streptomyces, Streptoverticillium and Nocardiopsis. Syst Appl Microbiol 8:24–27CrossRefGoogle Scholar
  41. Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using mulitilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703PubMedCrossRefGoogle Scholar
  42. Rong X, Gou Y, Huang Y (2009) Proposal to reclassify the Streptomyces albidoflavus clade based on the basis of multilocus sequence analysis and DNA–DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp solvifaciens. Syst Appl Microbiol 32:314–322PubMedCrossRefGoogle Scholar
  43. Saddler GS, O’Donnell AG, Goodfellow M, Minnikin DE (1987) SIMCA pattern recognition in the analysis of streptomycete fatty acids. J Gen Microbiol 133:1137–1147Google Scholar
  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  45. Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance inhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69Google Scholar
  46. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  47. Shirling EB, Gottlieb D (1968a) Cooperative description of type cultures of Streptomyces. II. Species descriptions from first study. Int J Syst Bacteriol 38:69–189CrossRefGoogle Scholar
  48. Shirling EB, Gottlieb D (1968b) Cooperative description of type cultures of Streptomyces. III. Additional species descriptions from first and second studies. Int J Syst Bacteriol 18:279–292CrossRefGoogle Scholar
  49. Shirling EB, Gottlieb (1969) Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol 19:391–512CrossRefGoogle Scholar
  50. Shirling EB, Gottlieb D (1972) Cooperative description of type strains of Streptomyces V. Additional descriptions. Int J Syst Bacteriol 22:265–394CrossRefGoogle Scholar
  51. Sneath PHA (1970) Application of numerical taxonomy to Actinomycetales: problems and perspectives. In: Prauser H (ed) The Actinomycetales. Gustav Fischer, Jena, pp 371–378Google Scholar
  52. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today Nov 06:152–155Google Scholar
  53. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  54. Tamura T, Ishida Y, Otoguro M, Hatano K, Suzuki K (2008a) Classification of ‘Streptomyces tenebrarius’ Higgins and Kastner as Streptoalloteichus tenebrarius nom. rev., comb. nov., and emended description of the genus Streptoalloteichus. Int J Syst Evol Microbiol 58:688–691PubMedCrossRefGoogle Scholar
  55. Tamura T, Ishida Y, Otoguro M, Hatano K, Labeda D, Price NP, Suzuki K (2008b) Reclassification of Streptomyces caeruleus as a synonym of Actinoalloteichus cyanogriseus and reclassification of Streptomyces spheroides and Streptomyces laceyi as later synonyms of Streptomyces niveus. Int J Syst Evol Microbiol 58:2812–2813PubMedCrossRefGoogle Scholar
  56. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 28 (in press)Google Scholar
  57. Trejo WH (1970) An evaluation of some concepts and criteria used in the speciation of streptomycetes. Trans NY Acad Sci Ser II 32:989–997Google Scholar
  58. Waksman SA (1919) Cultural studies of species of Actinomyces. Soil Sci 8:71–215CrossRefGoogle Scholar
  59. Waksman SA, Curtis RE (1916) The actinomycetes of the soil. Soil Sci 1:99–134CrossRefGoogle Scholar
  60. Waksman SA, Woodruff HB (1941) Actinomycetes antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42:231–249PubMedGoogle Scholar
  61. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  62. Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of determinative bacteriology, volume 4. Williams and Wilkins, Baltimore, pp 2453–2492Google Scholar
  63. Witt D, Stackebrandt E (1990) Unification of the genera Streptoverticillium, Streptomyces, emendation of Streptomyces Waksman, Henrici 1943 339AL. Syst Appl Microbiol 13:361–371Google Scholar
  64. Xu C, Wang W, Cui Q, Huang Y, Liu Z, Zheng G, Goodfellow M (2006) Neutrotolerant acidiphilic Streptomyces species isolated from acidic-soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Int J Syst Evol Microbiol 56:1109–1115PubMedCrossRefGoogle Scholar
  65. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer K-H, Ludwig W, Glöckner FO, Roselló-Móra R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree for all sequenced type strains. Sys Appl Microbiol 31:241–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • D. P. Labeda
    • 1
  • M. Goodfellow
    • 2
  • R. Brown
    • 2
  • A. C. Ward
    • 2
  • B. Lanoot
    • 3
  • M. Vanncanneyt
    • 3
  • J. Swings
    • 3
  • S.-B. Kim
    • 4
  • Z. Liu
    • 5
  • J. Chun
    • 6
  • T. Tamura
    • 7
  • A. Oguchi
    • 7
  • T. Kikuchi
    • 7
  • H. Kikuchi
    • 7
  • T. Nishii
    • 7
  • K. Tsuji
    • 7
  • Y. Yamaguchi
    • 7
  • A. Tase
    • 7
  • M. Takahashi
    • 7
  • T. Sakane
    • 7
  • K. I. Suzuki
    • 7
  • K. Hatano
    • 7
  1. 1.National Center for Agricultural Utilization Research, USDA-ARSPeoriaUSA
  2. 2.School of BiologyUniversity of NewcastleNewcastle upon TyneUK
  3. 3.BCCM/LMG Bacteria Collection, Department of Biochemistry, Physiology and MicrobiologyUniversiteit GentGhentBelgium
  4. 4.Department of Microbiology and Molecular Biology, School of Bioscience and BiotechnologyChungnam National UniversityDaejeonRepublic of Korea
  5. 5.State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  6. 6.School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea
  7. 7.NITE Biological Resource Center (NBRC)National Institute of Technology and EvaluationChibaJapan

Personalised recommendations