Antonie van Leeuwenhoek

, Volume 101, Issue 2, pp 303–311 | Cite as

Oxygen exposure increases resistance of Desulfovibrio vulgaris Hildenborough to killing by hydrogen peroxide

  • Janine D. Wildschut
  • Sean M. Caffrey
  • Johanna K. Voordouw
  • Gerrit Voordouw
Original Paper


Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free cultures of mutant and wild-type Desulfovibrio vulgaris (105–106 colony-forming units/ml) were treated with 0 to 2,500 μM H2O2 for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 μM H2O2, respectively, indicating the latter to be 4.6-fold more resistant to killing by H2O2 under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 μM H2O2) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance of the perR mutant increased less (4.6-fold; 50% killing at 1230 μM H2O2), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 μM H2O2 for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O2 effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H2O2 stress only following pretreatment with air.


Sulfate-reducing bacteria Hydrogen peroxide Oxidative stress PerR Rubrerythrin Desulfovibrio 



Sulfate-reducing bacteria




Optical density


Colony forming units


Polymerase chain reaction



This work was supported by an NSERC Discovery Grant to GV. GV also acknowledges salary support from an NSERC Industrial Research Chair Award.

Supplementary material

10482_2011_9634_MOESM1_ESM.doc (281 kb)
Fig. S1. Immunoblot analysis of Rbr2 content in D. vulgaris strains. (DOC 281 kb)
10482_2011_9634_MOESM2_ESM.doc (56 kb)
Table S1. Primers used for replacement mutagenesis in this study (DOC 56 kb)
10482_2011_9634_MOESM3_ESM.doc (54 kb)
Table S2. Genes with significantly changed expression ratio’s for perR mutant versus wild type. (DOC 53 kb)


  1. Antelmann H, Engelmann S, Schmid R, Hecker M (1996) General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 178:6571–6578PubMedGoogle Scholar
  2. Brioukhanov AL, Durand MC, Dolla A, Aubert C (2010) Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide: enzymatic and transcriptional analyses. FEMS Microbiol Lett 310:175–181PubMedCrossRefGoogle Scholar
  3. Caffrey SM, Park HS, Voordouw JK, He Z, Zhou J, Voordouw G (2007) Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:6159–6167PubMedCrossRefGoogle Scholar
  4. Caffrey SM, Park HS, Been J, Gordon P, Sensen CW, Voordouw G (2008) Gene expression of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions. Appl Environ Microbiol 74:2404–2413PubMedCrossRefGoogle Scholar
  5. Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848PubMedCrossRefGoogle Scholar
  6. Dolla A, Kurtz DM Jr, Texeira M, Voordouw G (2007) Biochemical proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 185–214CrossRefGoogle Scholar
  7. Dos Santos W, Pacheco I, Liu M, Teixeira M, Xavier A, LeGall J (2000) Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 182:796–804PubMedCrossRefGoogle Scholar
  8. Edgar RM, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedCrossRefGoogle Scholar
  9. Fournier M, Zhang Y, Wildschut JD, Dolla A, Voordouw JK, Schriemer DC, Voordouw G (2003) Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 185:71–79PubMedCrossRefGoogle Scholar
  10. Fournier M, Dermoun Z, Durand M, Dolla A (2004) A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 279:1787–1793PubMedCrossRefGoogle Scholar
  11. Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A (2006) Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 88:85–94PubMedCrossRefGoogle Scholar
  12. Frazão C, Silva G, Gomes C, Matias P, Coelho R, Sieker L, Macedo S, Liu M, Oliveira S, Teixeira M, Xavier A, Rodrigues-Pousada C, Carrondo M, Le Gall J (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–1045PubMedCrossRefGoogle Scholar
  13. Fu R, Voordouw G (1997) Targeted gene-replacement mutagenesis of dcrA encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology 143:376–383CrossRefGoogle Scholar
  14. Heidelberg J, Seshadri R, Haveman S et al (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559PubMedCrossRefGoogle Scholar
  15. Hillmann F, Fischer RJ, Saint Prix F, Girbal L, Bahl H (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68:848–860PubMedCrossRefGoogle Scholar
  16. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776PubMedCrossRefGoogle Scholar
  17. Johnston S, Lin S, Lee P, Caffrey SM, Wildschut J, Voordouw JK, da Silva SM, Pereira IAC, Voordouw G (2009) A genomic island of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough promotes survival under stress conditions while decreasing the efficiency of anaerobic growth. Environ Microbiol 11:981–991PubMedCrossRefGoogle Scholar
  18. Lee JW, Helmann JD (2006a) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367PubMedCrossRefGoogle Scholar
  19. Lee JW, Helmann JD (2006b) Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR. J Biol Chem 281:23567–23578PubMedCrossRefGoogle Scholar
  20. Lemos R, Gomes C, Santana M, LeGall J, Xavier A, Teixeira M (2001) The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496:40–43PubMedCrossRefGoogle Scholar
  21. Lobo S, Almeida C, Carita J, Teixeira M, Saraiva L (2008) The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II. Biochim Biophys Acta 1777:1528–1534PubMedCrossRefGoogle Scholar
  22. Mukhopadhyay A, Redding A, Joachimiak M, Arkin AP, Borglin SE, Dehal PS, Chakraborty R, Geller JT, Hazen TC, He Q, Joyner DC, Martin VJJ, Wall JD, Yang ZK, Zhou J, Keasling JD (2007) Cell wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010PubMedCrossRefGoogle Scholar
  23. Pereira P, He Q, Xavier A, Zhou J, Pereira I, Louro R (2008) Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions. Arch Microbiol 189:451–461PubMedCrossRefGoogle Scholar
  24. Rodionov D, Dubchak I, Arkin A, Alm E, Gelfand M (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90.1–R90.27CrossRefGoogle Scholar
  25. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  26. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows HGTA, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3353–3378Google Scholar
  27. Wildschut JD, Lang RM, Voordouw JK, Voordouw G (2006) Rubredoxin: oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris Hildenborough under microaerophilic conditions. J Bacteriol 188:6253–6260PubMedCrossRefGoogle Scholar
  28. Zhang W, Culley D, Hogan M, Vitiritti L, Brockman F (2006) Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie Van Leeuwenhoek 90:41–55PubMedCrossRefGoogle Scholar
  29. Zhou A, He Z, Redding-Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q, Keasling JD, Stahl DA, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2010) Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 12:2645–2657PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Janine D. Wildschut
    • 1
  • Sean M. Caffrey
    • 2
  • Johanna K. Voordouw
    • 2
  • Gerrit Voordouw
    • 2
  1. 1.Summit Liability Solutions Inc.CalgaryCanada
  2. 2.Petroleum Microbiology Research Group, Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations