Advertisement

Antonie van Leeuwenhoek

, Volume 101, Issue 1, pp 133–140 | Cite as

Tunicatimonas pelagia gen. nov., sp. nov., a novel representative of the family Flammeovirgaceae isolated from a sea anemone by the differential growth screening method

  • Jaewoo YoonEmail author
  • Naoya Oku
  • Sanghwa Park
  • Atsuko Katsuta
  • Hiroaki Kasai
Original Paper

Abstract

A Gram-negative, strictly aerobic, reddish-pink pigmented, non-motile, rod-shaped strain designated N5DB8-4T, was isolated from an orange-striped sea anemone Diadumene lineata by a differential growth screening method. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the family Flammeovirgaceae of the phylum Bacteroidetes and that it showed highest sequence similarity (89.1%) to Porifericola rhodea N5EA6-3A2BT. The strain could be differentiated phenotypically from recognized members of the family Flammeovirgaceae. The G+C content of the DNA is 52.6 mol%, the major respiratory quinone is menaquinone 7 (MK-7) and iso-C15:0, C16:1ω5c and iso-C15:1 G (the double-bond position indicated by capital letter is unknown) were the major fatty acids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain represents a novel taxon for which the name Tunicatimonas pelagia gen. nov., sp. nov. is proposed. The type strain of Tunicatimonas pelagia is N5DB8-4T (=KCTC 23473= NBRC 107804T).

Keywords

Tunicatimonas pelagia gen. nov., sp. nov. Concanavalin A Differential growth screening method 16S rRNA gene Polyphasic taxonomy 

Notes

Acknowledgment

The present research has been conducted by the Settlement Research Grant of Keimyung University in 2011.

References

  1. Atlas RM (1993) In: Parks LC (ed) Handbook of microbiological media. CRC, Boca RatonGoogle Scholar
  2. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedCrossRefGoogle Scholar
  3. Blenden DC, Goldberg HS (1965) Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900PubMedGoogle Scholar
  4. Brettar I, Christen R, Höfle MG (2004) Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 54:2335–2341PubMedCrossRefGoogle Scholar
  5. Choi JH, Im WT, Liu QM, Yoo JS, Shin JH, Rhee SK, Roh DH (2007) Planococcus donghaensis sp. nov., a starch-degrading bacterium isolated from the East Sea, South Korea. Int J Syst Evol Microbiol 57:2645–2650PubMedCrossRefGoogle Scholar
  6. Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  9. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726PubMedGoogle Scholar
  10. Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241CrossRefGoogle Scholar
  11. Khan ST, Nakagawa Y, Harayama S (2007) Sediminitomix flava gen. nov., sp. nov., of the phylum Bacteroidetes, isolated from marine sediment. Int J Syst Evol Microbiol 57:1689–1693PubMedCrossRefGoogle Scholar
  12. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  13. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  14. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S, Wu M, Wong PK, Pawlik JR, Qian PY (2006) Description of Fabibacter halotolerans gen. nov., sp. nov. and Roseivirga spongicola sp. nov., and reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov. Int J Syst Evol Microbiol 56:1059–1065PubMedCrossRefGoogle Scholar
  15. Lewin RA (1970) Flexithrix dorotheae gen. et sp. nov. (Flexibacterales); and suggestions for reclassifying sheathed bacteria. Can J Microbiol 16:511–515CrossRefGoogle Scholar
  16. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  17. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  18. Muramatsu Y, Takahashi M, Kaneyasu M, Iino T, Suzuki K, Nakagawa Y (2010) Persicobacter psychrovividus sp. nov., isolated from shellfish, and emended descriptions of the genus Persicobacter and Persicobacter diffluens. Int J Syst Evol Microbiol 60:1735–1739PubMedCrossRefGoogle Scholar
  19. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 21–41Google Scholar
  20. Nakagawa Y, Hamana K, Sakane T, Yamasato K (1997) Reclassification of Cytophaga aprica (Lewin 1969) Reichenbach 1989 in Flammeovirga gen. nov. as Flammeovirga aprica comb. nov. and of Cytophaga diffuens (ex Stanier 1940; emend. Lewin 1969) Reichenbach 1989 in Persicobacter gen. nov. as Persicobacter diffuens comb. nov. Int J Syst Bacteriol 47:220–223CrossRefGoogle Scholar
  21. Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV (2003) Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga-Flavobacterium-Bacteroides. Int J Syst Evol Microbiol 53:81–85PubMedCrossRefGoogle Scholar
  22. Nedashkovskaya OI, Kim SB, Lee DH, Lysenko AM, Shevchenko LS, Frolova GM, Mikhailov VV, Lee KH, Bae KS (2005a) Roseivirga ehrenbergii gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’, isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 55:231–234PubMedCrossRefGoogle Scholar
  23. Nedashkovskaya OI, Kim SB, Lysenko AM, Park MS, Mikhailov VV, Bae KS, Park HY (2005b) Roseivirga echinicomitans sp. nov., a novel marine bacterium isolated from the sea urchin Strongylocentrotus intermedius, and emended description of the genus Roseivirga. Int J Syst Evol Microbiol 55:1797–1800PubMedCrossRefGoogle Scholar
  24. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS, Lee KH, Park MS, Frolova GM, Oh HW, Bae KS, Park HY, Mikhailov VV (2005c) Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55:2583–2588PubMedCrossRefGoogle Scholar
  25. Nedashkovskaya OI, Kim SB, Vancanneyt M, Lysenko AM, Shin DS, Park MS, Lee KY, Jung WJ, Kalinovskaya NI, Mikhailov VV, Bae KS, Swings J (2006) Echinicola pacifica gen. nov., sp. nov., a novel flexibacterium isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 56:953–958PubMedCrossRefGoogle Scholar
  26. Nedashkovskaya OI, Kim SB, Hoste B, Shin DS (2007a) Echinicola vietnamensis sp. nov., a member of the phylum Bacteroidetes isolated from seawater. Int J Syst Evol Microbiol 57:761–763PubMedCrossRefGoogle Scholar
  27. Nedashkovskaya OI, Kim SB, Shin DS, Beleneva IA, Mikhailov VV (2007b) Fulvivirga kasyanovii gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from seawater in a mussel farm. Int J Syst Evol Microbiol 57:1046–1049PubMedCrossRefGoogle Scholar
  28. Nedashkovskaya OI, Vancanneyt M, Kim SB, Bae KS (2010) Reclassification of Flexibacter tractuosus (Lewin 1969) Leadbetter 1974 and ‘Microscilla sericea’ Lewin 1969 in the genus Marivirga gen. nov. as Marivirga tractuosa comb. nov. and Marivirga sericea nom. rev., comb. nov. Int J Syst Evol Microbiol 60:1858–1863PubMedCrossRefGoogle Scholar
  29. O’Sullivan LA, Weightman AJ, Fry JC (2002) New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl Environ Microbiol 68:201–210PubMedCrossRefGoogle Scholar
  30. Perry LB (1973) Gliding motility in some non-spreading flexibacteria. J Appl Microbiol 36:227–232CrossRefGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  33. Seo HS, Kwon KK, Yang SH, Lee HS, Bae SS, Lee JH, Kim SJ (2009) Marinoscillum gen. nov., a member of the family ‘Flexibacteraceae’, with Marinoscillum pacificum sp. nov. from a marine sponge and Marinoscillum furvescens nom. rev., comb. nov. Int J Syst Evol Microbiol 59:1204–1208PubMedCrossRefGoogle Scholar
  34. Srisukchayakul P, Suwanachart C, Sangnoi Y, Kanjana-Opas A, Hosoya S, Yokota A, Arunpairojana V (2007) Rapidithrix thailandica gen. nov., sp. nov., a marine gliding bacterium isolated from samples collected from the Andaman sea, along the southern coastline of Thailand. Int J Syst Evol Microbiol 57:2275–2279PubMedCrossRefGoogle Scholar
  35. Takahashi M, Susuki K, Nakagawa Y (2006) Emendation of the genus Flammeovirga and Flammeovirga aprica with the proposal of Flammeovirga arenaria, nom. rev., comb. nov. and Flammeovirga yaeyamensis sp. nov. Int J Syst Evol Microbiol 56:2095–2100PubMedCrossRefGoogle Scholar
  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  38. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  39. Xie C, Yokota A (2003) Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349PubMedCrossRefGoogle Scholar
  40. Yoon J, Ishikawa S, Kasai H, Yokota A (2007) Perexilibacter aurantiacus gen. nov., sp. nov., a novel member of the family ‘Flammeovirgaceae’ isolated from sediment. Int J Syst Evol Microbiol 57:964–968PubMedCrossRefGoogle Scholar
  41. Yoon J, Matsuo Y, Kasai H, Yokota A (2008) Limibacter armeniacum gen. nov., sp. nov., a novel representative of the family ‘Flammeovirgaceae’ isolated from marine sediment. Int J Syst Evol Microbiol 58:982–986PubMedCrossRefGoogle Scholar
  42. Yoon J, Adachi K, Park S, Kasai H, Yokota A (2010) Aureibacter tunicatorum gen. nov., sp. nov., a novel marine bacterium isolated from a coral reef sea squirt, and description of Flammeovirgaceae fam. nov. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.027573-0
  43. Yoon J, Oku N, Park S, Kasai H, Yokota A (2011) Porifericola rhodea gen. nov., sp. nov., a new member of the phylum Bacteroidetes isolated by the bait-streaked agar technique. Antonie van Leeuwenhoek 100:145–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jaewoo Yoon
    • 1
    Email author
  • Naoya Oku
    • 2
    • 4
  • Sanghwa Park
    • 3
  • Atsuko Katsuta
    • 2
    • 5
  • Hiroaki Kasai
    • 2
    • 5
  1. 1.College of PharmacyKeimyung UniversityDaeguRepublic of Korea
  2. 2.Marine Biotechnology Institute Co. LtdIwateJapan
  3. 3.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan
  4. 4.Biotechnology Research CenterToyama Prefectural UniversityToyamaJapan
  5. 5.Marine Biosciences Kamaishi Research LaboratoryKitasato UniversityIwateJapan

Personalised recommendations