Antonie van Leeuwenhoek

, Volume 101, Issue 2, pp 443–447 | Cite as

Fungus-growing Allomerus ants are associated with antibiotic-producing actinobacteria

  • Ryan F. Seipke
  • Jörg Barke
  • Mario X. Ruiz-Gonzalez
  • Jérôme Orivel
  • Douglas W. Yu
  • Matthew I. Hutchings
Short Communication


Fungus-growing attine ants use natural-product antibiotics produced by mutualist actinobacteria as ‘weedkillers’ in their fungal gardens. Here we report for the first time that fungus-growing Allomerus ants, which lie outside the tribe Attini, are associated with antifungal-producing actinobacteria, which offer them protection against non-cultivar fungi isolated from their ant-plants.


Fungus-growing ants Allomerus ants Insect fungiculture Ant-bacteria symbioses Streptomyces Amycolatopsis 



We acknowledge financial support from the University of East Anglia (UEA) and the Medical Research Council (grant number G0801721). MIH also acknowledges support from a Research Councils UK Fellowship, DWY received support from the Yunnan provincial government (20080A001) and Chinese Academy of Sciences (0902281081) and JO received support from the French Agence Nationale de la Recherche (ANR-06-JCJC-01909-01) and a fellowship from the Fondation pour la Recherche sur la Biodiversité (AAP-IN-2009-050). We thank the Hutchings group members for helpful discussions concerning this manuscript and Paul Thomas in the Henry Wellcome Imaging Laboratory at UEA for assistance with light microscopy.


  1. Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109PubMedCrossRefGoogle Scholar
  2. Bot ANM, Ortius-Lechner D, Finster K, Maile R, Boomsma JJ (2002) Variable sensitivity of fungi and bacteria to compound produced by the metapleural glands of leaf-cutting ants. Insectes Soc 49:363–370CrossRefGoogle Scholar
  3. Currie CR (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380PubMedCrossRefGoogle Scholar
  4. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–705CrossRefGoogle Scholar
  5. Defossez E, Selosse M-A, Dubois M-P, Mondolot L, Faccio A, Djieto-Lordon C, McKey D, Blatrix R (2009) Ant-plants and fungi: a new threeway symbiosis. New Phytol 182:942–949PubMedCrossRefGoogle Scholar
  6. Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005) Arboreal ants build traps to capture prey. Nature 434:973PubMedCrossRefGoogle Scholar
  7. Gerardo NM, Mueller UG, Price SL, Currie CR (2004) Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis. Proc Biol Sci 271:1791–1798PubMedCrossRefGoogle Scholar
  8. Haeder SR, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Nat Acad Sci USA 106:4742–4746PubMedCrossRefGoogle Scholar
  9. Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453CrossRefGoogle Scholar
  10. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535PubMedCrossRefGoogle Scholar
  11. Leroy C, Sejalon-Delmas N, Jauneau A, Ruiz-Gonzalez MX, Gryta H, Jargeat P, Corbara B, Dejean A, Orivel J (2011) Trophic mediation by a fungus in an ant-plant mutualism. J Ecol 99:583–590Google Scholar
  12. Little AEF, Murakami T, Mueller UG, Currie CR (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol Lett 2:12–16PubMedCrossRefGoogle Scholar
  13. Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393PubMedCrossRefGoogle Scholar
  14. Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959PubMedCrossRefGoogle Scholar
  15. Rodrigues A, Bacci M, Mueller UG, Ortiz A, Pagnocca FC (2008) Microfungal ‘weeds’ in the leafcutter ant symbiosis. Microb Ecol 56:604–614PubMedCrossRefGoogle Scholar
  16. Ruiz-Gonzalez MX, Male P-JG, Leroy C, Dejean A, Gryta H, Jargeat P, Quilichini A, Orivel J (2010) Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants. Biol Lett 7:475–479PubMedCrossRefGoogle Scholar
  17. Schildknecht H, Koob K (1971) Myrmicacin, the first insect herbicide. Angew Chem 10:124–125CrossRefGoogle Scholar
  18. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Nat Acad Sci USA 105:5435–5440PubMedCrossRefGoogle Scholar
  19. Sen R, Ishak HD, Estrada E, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Nat Acad Sci USA 106:17805–17810PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ryan F. Seipke
    • 1
  • Jörg Barke
    • 1
  • Mario X. Ruiz-Gonzalez
    • 2
  • Jérôme Orivel
    • 3
  • Douglas W. Yu
    • 4
  • Matthew I. Hutchings
    • 1
  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.Department of Abiotic StressGroup of Integrative and Systems Biology, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia)ValenciaSpain
  3. 3.CNRS, UMR Ecologie des Forêts de Guyane, Campus AgronomiqueKourou CedexFrance
  4. 4.State Key Laboratory of Genetic Resources and EvolutionEcology, Conservation and Environment Center (ECEC), Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina

Personalised recommendations