Advertisement

Antonie van Leeuwenhoek

, Volume 100, Issue 4, pp 589–605 | Cite as

Actinobacteria isolated from termite guts as a source of novel oxidative enzymes

  • Marilize Le Roes-HillEmail author
  • Jeffrey Rohland
  • Stephanie Burton
Original Paper

Abstract

A multi-faceted screening programme was designed to search for the oxidases, laccase, peroxidase and tyrosinase. Actinobacteria were selectively isolated from the paunch and colon region of the hindguts of the higher termite, Amitermes hastatus. The isolates were subjected to solid media assays (dye decolourization, melanin production and the utilization of indulin AT as sole carbon source) and liquid media assays. Eleven of the 39 strains had the ability to decolourize the dye RBBR, an indicator for the production of peroxidases in actinobacteria. Melanin production on ISP6 and ISP7 agar plates served as a good indicator for laccase and/or tyrosinase production and the ability of the strains to grow in the presence of indulin AT as a sole carbon source served as a good indicator of lignin peroxidase and/or general peroxidase production. Enzyme-producing strains were cultivated in liquid media and extracellular enzyme activities measured. Strains with the ability to produce oxidative enzymes under the conditions tested were identified to genus level by 16S rRNA gene analysis and compared to known oxidase producers. A strong relationship was observed between the environment sampled (termite guts where lignocellulose degradation occurs) and the dominant type of oxidative enzyme activity detected (laccases and peroxidases), which suggests the possibility of future targeted screening protocols linking the physical properties of the target enzymes with specific operational conditions required, such as lignocellulosic degradation in the preparation of biofuel feedstocks.

Keywords

Actinobacteria Higher order termite Oxidative enzymes 

Notes

Acknowledgments

Jeffrey Rohland isolated the actinobacterial strains and performed the 16S rRNA analysis of some of the strains, while Marilize Le Roes-Hill performed the screening for oxidative enzymes and some 16S rRNA analyses. We wish to thank Dr Paul Meyers (Department of Molecular and Cell Biology, University of Cape Town; UCT) for the strains from termite guts isolated by Jeffrey Rohland, Dr David Labeda for the actinobacterial control strains (USDA, ARS, NRRL culture collection) and Di James for DNA sequencing, UCT. We also acknowledge funding: Marilize Le Roes-Hill held a Claude Leon Foundation Postdoctoral Fellowship; Jeffrey Rohland was funded by the National Research Foundation (NRF) of South Africa and the University of Cape Town; and Prof. Stephanie Burton is funded by the NRF of South Africa and the Cape Peninsula University of Technology.

Supplementary material

10482_2011_9614_MOESM1_ESM.doc (169 kb)
Supplementary material 1 (DOC 169 kb)

References

  1. Antonopoulous VT, Hernández M, Arias ME, Mavrakos E, Ball AS (2001) The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Appl Microbiol Biotechnol 57:92–97CrossRefGoogle Scholar
  2. Arai T, Mikami Y (1972) Chromogenesis mirabilis in Streptomyces griseus. Appl Microbiol 24:768–771PubMedGoogle Scholar
  3. Arenskötter M, Bröker D, Steinbuchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204PubMedCrossRefGoogle Scholar
  4. Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958PubMedCrossRefGoogle Scholar
  5. Atack JM, Kelly DJ (2009) Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiol 4:677–690PubMedCrossRefGoogle Scholar
  6. Atlas RM (2004) Handbook of microbiological media, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microb Technol 22:185–191PubMedCrossRefGoogle Scholar
  8. Ball AS, Godden B, Helvenstein P, Penninckx MJ, McCarthy AJ (1990) Lignocarbohydrate solubilization from straw by actinomycetes. Appl Environ Microbiol 56:3017–3022PubMedGoogle Scholar
  9. Banci L (1997) Structural properties of peroxidases. J Biotechnol 53:253–263PubMedCrossRefGoogle Scholar
  10. Beis SH, Mukkamala S, Hill N, Joseph J, Baker C, Jensen B, Stemmler EA, Wheeler MC, Frederick BG, van Heiningen A, Berg AG, DeSisto WJ (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424Google Scholar
  11. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  12. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role of laccase in lignin biodegradation. FEBS J 267:99–102CrossRefGoogle Scholar
  13. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606PubMedCrossRefGoogle Scholar
  14. Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549PubMedCrossRefGoogle Scholar
  15. Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45PubMedCrossRefGoogle Scholar
  16. Carunchio F, Crescenzi C, Girelli AM, Messina A, Tarola AM (2001) Oxidation of ferulic acid by laccase: identification of the products and inhibitory effects of some dipeptides. Talanta 55:189–200PubMedCrossRefGoogle Scholar
  17. Cazemier AE, Verdoes JC, Reubsaet FAG, Hackstein JHP, van der Drift C, Op den Camp HJM (2003) Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 83:135–148PubMedCrossRefGoogle Scholar
  18. Chandra R, Singh S, Reddy MMK, Patel DK, Purohit HJ, Kapley A (2008) Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste. J Gen Appl Microbiol 54:399–407PubMedCrossRefGoogle Scholar
  19. Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14PubMedCrossRefGoogle Scholar
  20. Claus H, Faber G, König H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678PubMedCrossRefGoogle Scholar
  21. Colwell RR (1997) Microbial diversity: the importance of exploration and conservation. J Ind Microbiol Biotechnol 18:302–307PubMedCrossRefGoogle Scholar
  22. Cook AE, Meyers PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907–1915PubMedCrossRefGoogle Scholar
  23. Coy MR, Salem TZ, Denton JS, Kovaleva E, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol. doi: 10.1016/j.ibmb.2010.07.004
  24. Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM (2002) Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 99:187–198PubMedCrossRefGoogle Scholar
  25. Eggert C, Temp U, Dean JFD, Eriksson K-EL (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 376:202–206PubMedCrossRefGoogle Scholar
  26. Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677PubMedCrossRefGoogle Scholar
  27. Ferrar P (1982) Termites of a South African Savanna. I. List of species and subhabitat preferences. Oecologia 52:125–132CrossRefGoogle Scholar
  28. Giroux H, Vidal P, Bouchard J, Lamy F (1988) Degradation of kraft lignin by Streptomyces viridosporus and Streptomyces badius. Appl Environ Microbiol 54:3064–3070PubMedGoogle Scholar
  29. Gottlieb D (1973) General consideration and implications of the Actinomycetales. In: Sykes G, Skinner FA (eds) Actinomycetales: characteristics and practical importance. Academic Press Inc., London, pp 1–10Google Scholar
  30. Gottschalk LMF, Bon EPS, Nobrega R (2008) Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Appl Biochem Biotechnol 147:23–32PubMedCrossRefGoogle Scholar
  31. Graf E, Schneider K, Nicholson G, Ströbele M, Jones AL, Goodfellow M, Beil W, Süssmuth RD, Fiedler H-P (2007) Elloxazinones A and B, new aminophenoxazinones from Streptomyces griseus Acta 2871. J Antibiot 60:277–284PubMedCrossRefGoogle Scholar
  32. Guerra-Lopez D, Daniels L, Rawat M (2007) Mycobacterium smegmatis mc2 155 fbiC and MSMEG_2392 are involved in triphenylmethane dye decolourization and coenzyme F420 biosynthesis. Microbiology 153:2724–2732PubMedCrossRefGoogle Scholar
  33. Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Nippon Hosenkin Gakkaishi 22:12–19Google Scholar
  34. Hernández M, Rodríguez J, Soliveri J, Copa JL, Pérez MI, Arias ME (1994) Paper mill effluent decolorization by fifty Streptomyces strains. Appl Environ Microbiol 60:3909–3913PubMedGoogle Scholar
  35. Hopwood D (2007) An introduction to the actinobacteria. Microbiol Today May:60–62Google Scholar
  36. Ito M, Oda K (2000) An organic solvent resistant tyrosinase from Streptomyces sp. REN-21: purification and characterization. Biosci Biotechnol Biochem 64:261–267PubMedCrossRefGoogle Scholar
  37. Johannes C, Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199PubMedCrossRefGoogle Scholar
  38. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035PubMedGoogle Scholar
  39. Kirby R (2006) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168PubMedCrossRefGoogle Scholar
  40. Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28:1015–1048CrossRefGoogle Scholar
  41. Korus RA, Lodha SJ, Adhi TP, Crawford DL (1991) Kinetics of peroxidase production by Streptomyces viridosporous and recombinant Streptomyces lividans. Biotechnol Prog 7:510–515CrossRefGoogle Scholar
  42. Le Roes-Hill M, Goodwin CM, Burton SG (2009) Review paper. Phenoxazinone synthase: What’s in a name? Trends Biotechnol 27:248–258PubMedCrossRefGoogle Scholar
  43. Le Roes-Hill M, Khan N, Burton SG (2011) Review paper. Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol 164:681–713PubMedCrossRefGoogle Scholar
  44. Lerch K, Ettlinger L (1972) Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur J Biochem 31:427–437PubMedCrossRefGoogle Scholar
  45. Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376PubMedCrossRefGoogle Scholar
  46. May SW (1999) Applications of oxidoreductases. Biotechnology 10:370–375Google Scholar
  47. McMullan G, Meehan C, Connely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87PubMedCrossRefGoogle Scholar
  48. Mercer DK, Iqbal M, Miller PGG, McCarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62:2186–2190PubMedGoogle Scholar
  49. Molina-Guijarro JM, Pérez J, Muñoz-Dorado J, Guillén F, Moya R, Hernández M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12:13–21PubMedGoogle Scholar
  50. Moncheva P, Tishkov S, Dimitrova N, Chipeva V, Antonova-Nikolova S, Bogatzevska N (2002) Characteristics of soil actinomycetes from Antarctica. J Cult Collect 3:3–14Google Scholar
  51. Ncanana S, Burton S (2007) Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer. J Mol Catal B Enzym 44:66–71CrossRefGoogle Scholar
  52. Niedermeyer THJ, Mikolasch A, Lalk M (2005) Nuclear amination catalyzed by fungal laccases: reaction products of p-hydroquinones and primary amines. J Org Chem 70:2002–2008PubMedCrossRefGoogle Scholar
  53. Niladevi KN, Prema P (2005) Mangrove actinomycetes as the source of ligninolytic enzymes. Nippon Hosenkin Gakkaishi 19:40–47Google Scholar
  54. Nishimura M, Ooi O, Davies J (2006) Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. J Biosci Bioeng 102:124–127PubMedCrossRefGoogle Scholar
  55. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocelluloses. Appl Microbiol Biotechnol 61:1–9PubMedGoogle Scholar
  56. Orenes-Piñero E, García-Carmona F, Sánchez-Ferrer A (2005) A kinetic study of p-cresol oxidation by quince fruit polyphenol oxidase. J Agric Food Chem 53:1196–1200PubMedCrossRefGoogle Scholar
  57. Ozeki M, Isagi Y, Tsubota H, Jacklyn P, Bowman DMJS (2007) Phylogeography of an Australian termite, Amitermes laurensis (Isoptera, Termitidae), with special reference to the variety of mound shapes. Mol Phylogenet Evol 42:236–247PubMedCrossRefGoogle Scholar
  58. Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26:107–112CrossRefGoogle Scholar
  59. Pasti MB, Pometto AL III, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218PubMedGoogle Scholar
  60. Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613PubMedGoogle Scholar
  61. Pasti-Grigsby MB, Burke NS, Goszczynski S, Crawford DL (1996) Transformation of Azo Dye Isomers by Streptomyces chromofuscus A11. Appl Environ Microbiol 62:1814–1817PubMedGoogle Scholar
  62. Picker M, Griffiths C, Weaving A (2002) In: Hromnik J (ed) Field guide to insects of South Africa. Struik Publishers, Cape TownGoogle Scholar
  63. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24CrossRefGoogle Scholar
  64. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 41:8–15CrossRefGoogle Scholar
  65. Raj A, Reddy MMK, Chandra R, Purohit HJ, Kapley A (2007) Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18:783–792PubMedCrossRefGoogle Scholar
  66. Ramachandra M, Crawford DL, Pometto AL III (1987) Exctracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains. Appl Environ Microbiol 53:2754–2760PubMedGoogle Scholar
  67. Ride JP (1980) The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiol Plant Pathol 16:187–196CrossRefGoogle Scholar
  68. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226PubMedCrossRefGoogle Scholar
  69. Rohland J (2010) Investigating the actinomycete diversity inside the hindgut of an indigenous termite, Microhodotermes viator. PhD thesis. Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South AfricaGoogle Scholar
  70. Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095PubMedGoogle Scholar
  71. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  72. Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb Technol 24:433–437CrossRefGoogle Scholar
  73. Shimokawa T, Shoda M, Sugano Y (2009) Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in air-membrane surface reactor. J Biosci Bioeng 107:113–115PubMedCrossRefGoogle Scholar
  74. Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  75. Solano F, Lucas-Elio P, López-Serrano D, Fernández E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204:175–181PubMedCrossRefGoogle Scholar
  76. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80PubMedCrossRefGoogle Scholar
  77. Sugano Y (2009) DyP-type peroxidases comprise a novel haem peroxidase family. Cell Mol Life Sci 66:1387–1403PubMedCrossRefGoogle Scholar
  78. Suzuki H, Furusho Y, Higashi T, Ohnishi Y, Horinouchi S (2006) A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone. J Biol Chem 281:824–833PubMedCrossRefGoogle Scholar
  79. Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258PubMedGoogle Scholar
  80. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  81. Tansey MR, Murrmann DN, Behnke BK, Behnke ER (1977) Enrichment, isolation and assay of growth of thermophilic and thermotolerant fungi in lignin-containing media. Mycologia 69:463–476CrossRefGoogle Scholar
  82. Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46:1–15CrossRefGoogle Scholar
  83. Trinder P (1966) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–28Google Scholar
  84. Van Bloois E, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430PubMedCrossRefGoogle Scholar
  85. Varma A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15:9–28CrossRefGoogle Scholar
  86. Wang YM, Zhang ZS, Ruan JS (1996) A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov. Int J Syst Bacteriol 46:933–938PubMedCrossRefGoogle Scholar
  87. Wang Y, Zhang ZS, Ruan JS, Wang YM, Ali SM (1999) Investigation of actinomycete diversity in the tropical rainforests of Singapore. J Ind Microbiol Biotechnol 23:178–187CrossRefGoogle Scholar
  88. Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801PubMedCrossRefGoogle Scholar
  89. Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40PubMedCrossRefGoogle Scholar
  90. Winter B, Fiechter A, Zimmerman W (1991) Degradation of organochlorine compounds in spent sulfite bleach plant effluents by Actinomycetes. Appl Environ Microbiol 57:2858–2863PubMedGoogle Scholar
  91. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50CrossRefGoogle Scholar
  92. Xu J, Yang Q (2010) Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation 21:107–116PubMedCrossRefGoogle Scholar
  93. Yang H-Y, Chen CW (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: A case of a double-edged sword. PLoS ONE 4:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marilize Le Roes-Hill
    • 1
    Email author
  • Jeffrey Rohland
    • 2
    • 3
  • Stephanie Burton
    • 1
  1. 1.Biocatalysis and Technical Biology Research GroupCape Peninsula University of TechnologyBellvilleSouth Africa
  2. 2.Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch, Cape TownSouth Africa
  3. 3.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations