Antonie van Leeuwenhoek

, Volume 100, Issue 2, pp 279–289 | Cite as

Analysis of the DNA region mediating increased thermotolerance at 58°C in Cronobacter sp. and other enterobacterial strains

  • Jana Gajdosova
  • Kristina Benedikovicova
  • Natalia Kamodyova
  • Lubomira Tothova
  • Eva Kaclikova
  • Stanislav Stuchlik
  • Jan Turna
  • Hana DrahovskaEmail author
Original Paper


Cronobacter spp. are opportunistic pathogens associated with serious infections in neonates. The increased stress tolerance, including thermoresistance, of some Cronobacter strains can promote their survival in production facilities and thus raise the possibility of contamination of dried infant milk formula, which has been identified as a potential source of infection. In this study, we characterized a DNA region which is present in some Cronobacter strains and which contributes to their prolonged survival at 58°C. The 18 kbp long region containing 22 open reading frames was sequenced in Cronobacter sakazakii ATCC 29544. The major feature of the region contained a cluster of conserved genes, most of them having significant homologies with bacterial proteins involved in some type of stress response, including heat, oxidation and acid stress. The same thermoresistance DNA region was detected in strains belonging to the genera Cronobacter, Enterobacter, Citrobacter and Escherichia and its presence positively correlated with increased thermotolerance.


Cronobacter Enterobacter sakazakii Heat resistance Food 



This publication is the result of the project implementation: Centre of excellence for utilization of information bio-macromolecules in disease prevention and in improving of quality of life (ITMS 26240120027) supported by the Research & Development Operational Programme funded by the ERDF. This work was also supported by Slovak Research and Development Agency under the contract No. APVV-27-009705 and by Slovak Ministry of Education under the contract No. VEGA 1/0344/10. Tomáš Kuchta and Katarína Oravcová from the Food Research Institute Bratislava are acknowledged for the critical reading of the manuscript.


  1. Arroyo C, Condón S, Pagán R (2009) Thermobacteriological characterization of Enterobacter sakazakii. Int J Food Microbiol 136:110–118PubMedCrossRefGoogle Scholar
  2. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1407PubMedCrossRefGoogle Scholar
  3. Bojer MS, Struve C, Ingmer H, Hansen DS, Krogfelt KA (2010) Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae. PLoS ONE 5:e15467PubMedCrossRefGoogle Scholar
  4. Breeuwer P, Lardeau A, Peterz M, Joosten HM (2003) Desiccation and heat tolerance of Enterobacter sakazakii. J Appl Microbiol 95:967–973PubMedCrossRefGoogle Scholar
  5. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163PubMedCrossRefGoogle Scholar
  6. Caubilla-Barron J, Hurrell E, Townsend S, Cheetham P, Loc-Carrillo C, Fayet O, Prère M-F, Forsythe SJ (2007) Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J Clin Microbiol 45:3979–3985PubMedCrossRefGoogle Scholar
  7. Chang C-H, Chiang M-L, Chou C-C (2009) The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988. Int J Food Microbiol 134:184–189PubMedCrossRefGoogle Scholar
  8. Dancer GI, Mah J-H, Rhee M-S, Hwang I-G, Kang D-H (2009) Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. J Appl Microbiol 107:1606–1614PubMedCrossRefGoogle Scholar
  9. Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34:40–48PubMedCrossRefGoogle Scholar
  10. Edelson-Mammel SG, Buchanan RL (2004) Thermal Inactivation of Enterobacter sakazakii in Rehydrated Infant Formula. J Food Prot 67:60–63PubMedGoogle Scholar
  11. FAO/WHO report (2008) Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae: meeting report. Microbiological risk assessment series no. 15, Rome, ItalyGoogle Scholar
  12. Friedemann M (2007) Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 116:1–10PubMedCrossRefGoogle Scholar
  13. Gurtler JB, Kornacki JL, Beuchat LR (2005) Enterobacter sakazakii: a coliform of increased concern to infant health. Review. Int J Food Microbiol 104:1–34PubMedCrossRefGoogle Scholar
  14. Han M-J, Yun H, Lee SY (2008) Microbial small heat shock proteins and their use in biotechnology. Biotechnol Adv 26:591–609PubMedCrossRefGoogle Scholar
  15. Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S (2010) Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 7:339–350PubMedCrossRefGoogle Scholar
  16. Iversen C, Forsythe S (2004) Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol 21:771–777CrossRefGoogle Scholar
  17. Iversen C, Lane M, Forsythe SJ (2004) The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett Appl Microbiol 38:378–382PubMedCrossRefGoogle Scholar
  18. Iversen C, Mullane N, McCardel B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H (2008) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1 and three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447PubMedCrossRefGoogle Scholar
  19. Kim DY, Kim KK (2005) Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38:266–274PubMedCrossRefGoogle Scholar
  20. Kucerova E, Clifton SW, Xia X-Q, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other cronobacter species. PLoS ONE 5:e9556PubMedCrossRefGoogle Scholar
  21. Kumar J, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci USA 101:3759–3764PubMedCrossRefGoogle Scholar
  22. Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115PubMedCrossRefGoogle Scholar
  23. Masuda N, Church GM (2003) Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712PubMedCrossRefGoogle Scholar
  24. Mates AK, Sayed AK, Foster JW (2007) Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189:2759–2768PubMedCrossRefGoogle Scholar
  25. Nazarowec-White M, Farber JM (1997) Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett Appl Microbiol 24:9–13PubMedCrossRefGoogle Scholar
  26. Nishino K, Inazumi Y, Yamaguchi A (2003) Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J Bacteriol 185:2667–2672PubMedCrossRefGoogle Scholar
  27. Riedel K, Lehner A (2007) Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7:1217–1231PubMedCrossRefGoogle Scholar
  28. Roosild TP, Castronovo S, Miller S, Li C, Rasmussen T, Bartlett W, Gunasekera B, Choe S, Booth IR (2009) KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Structure 17:893–903PubMedCrossRefGoogle Scholar
  29. Sakoh M, Ito K, Akiyama Y (2005) Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J Biol Chem 280:33305–33310PubMedCrossRefGoogle Scholar
  30. Schlicht M, Berens C, Daam J, Hillen W (2006) Random insertion of a TetR-inducing peptide tag into Escherichia coli proteins allows analysis of protein levels by induction of reporter gene expression. Appl Environ Microbiol 72:5637–5642PubMedCrossRefGoogle Scholar
  31. Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Eberl L, Riedel K, Lehner A (2009) Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol 160:608–614PubMedCrossRefGoogle Scholar
  32. Siddiqui AA, Jalah R, Sharma YD (2007) Expression and purification of HtpX-like small heat shock integral membrane protease of an unknown organism related to Methylobacillus flagellatus. J Biochem Biophys Methods 70:539–546PubMedCrossRefGoogle Scholar
  33. Turcovsky I, Kunikova K, Drahovska H, Kaclikova E (2011) Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods. Antonie Van Leeuwenhoek 99:257–269PubMedCrossRefGoogle Scholar
  34. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedCrossRefGoogle Scholar
  35. van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A (2001) Outbreaks of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol 39:293–297PubMedCrossRefGoogle Scholar
  36. Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194PubMedCrossRefGoogle Scholar
  37. Vuilleumier S, Chistoserdova L, Lee M-C et al (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4(5):e5584PubMedCrossRefGoogle Scholar
  38. Walsh D, Molloy C, Iversen C, Carroll J, Cagney C, Fanning S, Duffy G (2011) Survival characteristics of environmental and clinically derived strains of Cronobacter sakazakii in infant milk formula (IMF) and ingredients. J Appl Microbiol 110:697–703PubMedCrossRefGoogle Scholar
  39. Williams TL, Monday SR, Edelson-Mammel S, Buchanan R, Musser SM (2005) A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 5:4161–4169PubMedCrossRefGoogle Scholar
  40. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jana Gajdosova
    • 1
  • Kristina Benedikovicova
    • 1
  • Natalia Kamodyova
    • 1
  • Lubomira Tothova
    • 1
  • Eva Kaclikova
    • 2
  • Stanislav Stuchlik
    • 1
  • Jan Turna
    • 1
  • Hana Drahovska
    • 1
    Email author
  1. 1.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Microbiology and Molecular BiologyFood Research InstituteBratislavaSlovakia

Personalised recommendations