Advertisement

Antonie van Leeuwenhoek

, Volume 100, Issue 1, pp 67–73 | Cite as

Gilvimarinus agarilyticus sp. nov., a new agar-degrading bacterium isolated from the seashore of Jeju Island

  • Byung-Chun Kim
  • Mi Na Kim
  • Kang Hyun Lee
  • Hyun Soon Kim
  • Sung Ran Min
  • Kee-Sun Shin
Original Paper

Abstract

An agarolytic bacterium, designated as strain M5cT, was isolated from sea sand in Jeju Island, Korea. This isolate was Gram-negative, positive for catalase and oxidase, rod and motile by means of monotrichous flagella. Strain M5cT has translucent or dark ivory colonies, forms a dent on an agar plate under colonies, and grows in the presence of 1–12% (w/v) NaCl and at 10–37°C. This isolate hydrolyzes agar, alginic acid, carboxymethyl (CM)-cellulose and starch. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M5cT can be considered as a species within the genus Gilvimarinus, being most closely related to Gilvimarinus chinensis QM42T, with a 16S rRNA gene sequence similarity of 95.6%. The major cellular fatty acids were C16:1ω7c and/or iso-C15:0 2OH (33.5%), C16:0 (26.5%) and C18:1ω7c (14.1%). The DNA G+C content was 53.8 mol%. Based on these polyphasic data, strain M5cT should be classified as a novel species, for which the name Gilvimarinus agarilyticus sp. nov. is proposed. The type strain for the novel species is M5cT (= KCTC 23325T = NCAIM B 02425T).

Keywords

Gilvimarinus agarilyticus Agar Phylogeny Taxonomy 16S rRNA gene 

Notes

Acknowledgments

We thank Prof. Hans Georg Trüper for his advice on the Latin naming of the organism. This work was supported by a grant (NMC0301039) from the Ministry of Science and Technology (MOST) of the Republic of Korea and by a grant from the KRIBB Research Initiative Program.

Supplementary material

10482_2011_9565_MOESM1_ESM.pdf (934 kb)
(PDF 934 kb)

References

  1. Aoki T, Araki T, Kitamikado M (1990) Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur J Biochem 187:461–465PubMedCrossRefGoogle Scholar
  2. Barrow GI, Feltham RKA (eds) (1993) Cowan and Steel’s Manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  3. Chang SC, Wu MC, Chen WM, Tsai YH, Lee TM (2009) Chitinilyticum litopenaei sp. nov., isolated from a freshwater shrimp pond, and emended description of the genus Chitinilyticum. Int J Syst Evol Microbiol 59:2651–2655PubMedCrossRefGoogle Scholar
  4. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  5. Du ZJ, Zhang DC, Liu SN, Chen JX, Tian XL, Zhang ZN, Liu HC, Chen GJ (2009) Gilvimarinus chinensis gen. nov., sp. nov., an agar-digesting marine bacterium within the class Gammaproteobacteria isolated from coastal seawater in Qingdao, China. Int J Syst Evol Microbiol 59:2987–2990PubMedCrossRefGoogle Scholar
  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package), version 3.6. Distributed by the author Department of Genome Sciences. University of Washington, SeattleGoogle Scholar
  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  10. Fu XT, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8:200–218PubMedCrossRefGoogle Scholar
  11. Kawamoto H, Horibe A, Miki Y, Kimura T, Tanaka K, Nakagawa T, Kawamukai M, Matsuda H (2006) Cloning and sequencing analysis of alginate lyase genes from the marine bacterium Vibrio sp. O2. Mar Biotechnol 8:481–490PubMedCrossRefGoogle Scholar
  12. Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, Choi IG (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: an exo-type beta-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86:227–234PubMedCrossRefGoogle Scholar
  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  14. Kirimura K, Masuda N, Iwasaki Y, Nakagawa H, Kobayashi R, Usami S (1999) Purification and characterization of a novel beta-agarase from an alkalophilic bacterium, Alteromonas sp. E-1. J Biosci Bioeng 87:436–441PubMedCrossRefGoogle Scholar
  15. Lakshmikanth M, Manohar S, Souche Y, Lalitha J (2006) Extracellular b-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol 22:1087–1094CrossRefGoogle Scholar
  16. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  17. Lee S-M, Yu BJ, Kim YM, Choi S-J, Ha J-M, Lee J-H (2009) Production of bio-ethanol from agar using Saccharomyces cerevisiae. J Korean Ind Eng Chem 20:290–295Google Scholar
  18. Long M, Yu Z, Xu X (2010) A novel beta-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol 12:62–69PubMedCrossRefGoogle Scholar
  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  20. Morrice LM, McLean MW, Long WF, Williamson FB (1983) Beta-agarases I and II from Pseudomonas atlantica. Substrate specificities. Eur J Biochem 137:149–154PubMedCrossRefGoogle Scholar
  21. Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K (2005) Purification and characterization of a novel alpha-agarase from a Thalassomonas sp. Curr Microbiol 50:212–216PubMedCrossRefGoogle Scholar
  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  23. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  24. Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids, Technical note 101. MIDI Inc, NewarkGoogle Scholar
  25. Schroeder DC, Jaffer MA, Coyne VE (2003) Investigation of the role of a beta(1–4) agarase produced by Pseudoalteromonas gracilis B9 in eliciting disease symptoms in the red alga Gracilaria gracilis. Microbiology 149:2919–2929PubMedCrossRefGoogle Scholar
  26. Shieh WY, Chen AL, Chiu HH (2000) Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50:321–329PubMedCrossRefGoogle Scholar
  27. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  28. Suzuki H, Sawai Y, Suzuki T, Kawai K (2003) Purification and characterization of an extracellular beta-agarase from Bacillus sp. MK03. J Biosci Bioeng 95:328–334PubMedGoogle Scholar
  29. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780PubMedGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Byung-Chun Kim
    • 1
  • Mi Na Kim
    • 1
  • Kang Hyun Lee
    • 1
  • Hyun Soon Kim
    • 2
  • Sung Ran Min
    • 2
  • Kee-Sun Shin
    • 1
  1. 1.Microbiological Resources CenterKRIBBDaejeonRepublic of Korea
  2. 2.Plant Systems Engineering Research CenterKRIBBDaejeonRepublic of Korea

Personalised recommendations