Advertisement

Antonie van Leeuwenhoek

, Volume 99, Issue 3, pp 663–670 | Cite as

Halomonas aidingensis sp. nov., a moderately halophilic bacterium isolated from Aiding salt lake in Xinjiang, China

  • Wen-Yan LiuEmail author
  • Juan WangEmail author
  • Meng Yuan
Original Paper

Abstract

Two Gram-negative moderately halophilic bacterial strains, designated Ad-1T and C-12, were isolated from Aiding salt lake of Xinjiang in China. The novel isolates were subjected to a polyphasic taxonomic study. Cells of these strains were cocci or short rods and motile with polar flagella. Colonies produced brown-red pigment. The isolates grew in the range of 0.5–25% (w/v) NaCl, pH 5.5–10.5 and 4–45°C. Analysis of their 16S rRNA gene sequences indicated that strains Ad-1T and C-12 belonged to the genus Halomonas showing 92.7–98.4% similarity with the type species. The isoprenoid quinones of the isolates were Q-9 and Q-8. The major cellular fatty acids were C18:1ω7c, C16:1ω7c/6c, C16:0, C12:0–3OH and C10:0. The DNA G + C contents of strains Ad-1T and C-12 were 64.6 and 63.9 mol%, respectively. The DNA relatedness between the two isolates was 89.2%. The similarities of these newly isolated strains with closely related type strains were lower than 35% at the genetic level. Based on phenotypic, chemotaxonomic and genetic characteristics, the representative strain Ad-1T is considered to be a novel species of the genus Halomonas, for which the name Halomonas aidingensis sp. nov. is proposed, with Ad-1T (= CGMCC 1.10191T = NBRC 106173T) as the type strain.

Keywords

Halomonas aidingensis sp. nov. Moderate halophile Salt lake Gram-negative 

Notes

Acknowledgments

This work was supported financially by the Program for New Century Excellent Talents in Xiamen University to Prof. Chun Fan. We are grateful to Yuguang Zhou (China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences), for helping in microbiological culture collection.

Supplementary material

10482_2010_9542_MOESM1_ESM.pdf (1 mb)
Supplementary Figure S1 Supplementary Figure S1. Transmission electron micrograph of strain Ad-1T. Bar, 1 μm Supplementary Figure S2 (a & b) Supplementary Figure S2. Phylogenetic tree based on 16S rRNA gene sequences. Numbers at branching points refer to bootstrap values (1000 resamplings; only values above 50% are shown). (a) minimum-evolution tree. (b) maximum-parsimony tree. (PDF 1047 kb)

References

  1. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg K.H E (eds) The Prokaryotes: a handbook on the biology of bacteria, 3rd edn, vol. 6, Schleifer & E. Springer, Stackebrandt. New York, pp 811–835Google Scholar
  2. Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002) Proposal of Cobetia marina gen. nov., comb, nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25:207–211CrossRefPubMedGoogle Scholar
  3. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446CrossRefPubMedGoogle Scholar
  4. Arenas M, Bañón PI, Copa-Patiño JL, Sánchez-Porro C, Ventosa A, Soliveri J (2009) Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 59:578–582CrossRefPubMedGoogle Scholar
  5. Chen YG, Zhang YQ, Huang HY, Klenk HP, Tang SK, Huang K, Chen QH, Cui XL, Li WJ (2009) Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:2888–2893CrossRefPubMedGoogle Scholar
  6. Collins MD (1985) Isoprenoid quinone analysis in classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287Google Scholar
  7. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  8. Doetsch RN (1981) Determinative methods of light microscopy. In: Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH, Gerhardt P (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33Google Scholar
  9. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing (English translation)Google Scholar
  10. Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191CrossRefGoogle Scholar
  11. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  12. Franzmann PD, Burton HR, McMeekin TA (1987) Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37:27–34CrossRefGoogle Scholar
  13. Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov., a new family of the class proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11:16–19Google Scholar
  14. González-Domenech CM, Martìnez-Checa F, Quesada E, Bėjar V (2009) Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 59:1290–1296CrossRefPubMedGoogle Scholar
  15. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127CrossRefGoogle Scholar
  16. Guan TW, Xiao J, Zhao K, Luo XX, Zhang XP, Zhang LL (2009) Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.011593-0 Google Scholar
  17. Guzmán D, Quillaguamán J, Muñoz M, Hatti-Kaul R (2010) Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int J Syst Evol Microbiol 60:749–753Google Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  19. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4(230):184–192Google Scholar
  20. Kim KK, Lee KC, Oh HM, Lee JS (2010) Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int J Syst Evol Microbiol 60:369–371Google Scholar
  21. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  22. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184PubMedGoogle Scholar
  23. Liu WY, Jiang LL, Guo CJ, Yang SS (2010) Terribacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Xinjiang, China. Int J Syst Evol Microbiol doi: 10.1099/ijs.0.017228-0
  24. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  25. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118CrossRefPubMedGoogle Scholar
  26. Martínez-Cánovas MJ, Quesada E, Llamas I, Bėjar V (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737CrossRefPubMedGoogle Scholar
  27. Mata JA, Martinez-Canovas J, Quesada E, Bejar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375CrossRefPubMedGoogle Scholar
  28. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9(5):945–967Google Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. Sánchez-Porro C, Kaur B, Mann H, Ventosa A (2010) Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanicm. Int J Syst Evol Microbiol doi: 10.1099/ijs.0.020628-0
  31. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36Google Scholar
  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680CrossRefPubMedGoogle Scholar
  34. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  35. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495CrossRefGoogle Scholar
  36. Wang YN, Cai H, Yu SL, Wang ZY, Liu J, Wu XL (2007) Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57:911–915CrossRefPubMedGoogle Scholar
  37. Wayne LG, Brenner DJ, Colwell RR et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  38. Wu G, Wu XQ, Wang YN, Chi CQ, Tang YQ, Kida K, Wu XL, Luan ZK (2008) Halomonas daqingensis sp. nov., a moderately halophilic bacterium isolated from an oilfield soil. Int J Syst Evol Microbiol 58:2859–2865CrossRefPubMedGoogle Scholar
  39. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ, Park YH (2002) Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.National Engineering Laboratory of BiohydrometallurgyGeneral Research Institute for Nonferrous MetalsBeijingPeople’s Republic of China
  2. 2.Department of Preventive MedicineMedical College of Xiamen UniversityXiamenPeople’s Republic of China
  3. 3.Nanshan District Center for Disease Control and PreventionShenzhen, GuangdongPeople’s Republic of China

Personalised recommendations