Advertisement

Antonie van Leeuwenhoek

, Volume 98, Issue 3, pp 263–278 | Cite as

Aurifilum, a new fungal genus in the Cryphonectriaceae from Terminalia species in Cameroon

  • Aime Didier B. Begoude
  • Marieka Gryzenhout
  • Michael J. Wingfield
  • Jolanda Roux
Original Paper

Abstract

Native Terminalia spp. in West Africa provide a popular source of construction timber as well as medical, spiritual and social benefits to rural populations. Very little is, however, known regarding the diseases that affect these trees. During an investigation into possible diseases of Terminalia spp. in Cameroon, orange to yellow fungal fruiting structures, resembling those of fungi in the Cryphonectriaceae, were commonly observed on the bark of native Terminalia ivorensis, and on dead branches of non-native Terminalia mantaly. In this study the fungus was identified based on morphological features as well as DNA sequence data (ITS and β-tubulin) and its pathogenicity was tested on T. mantaly seedlings. Our results showed that isolates of this fungus represent a previously undescribed genus in the Cryphonectriaceae, which we describe as Aurifilum marmelostoma gen. et sp. nov. Pathogenicity tests revealed that A. marmelostoma is pathogenic on T. mantaly. These tests, and the association of A. marmelostoma with disease symptoms on T. ivorensis, suggest that the fungus is a pathogen of this important tree.

Keywords

Canker diseases Africa Fungi Terminalia spp. 

Notes

Acknowledgements

We thank the DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), the University of Pretoria, South Africa for financial support. We also recognise the Institute of Agricultural Research for Development (IRAD), the International Institute of Tropical Agriculture (IITA) and the Yaoundé Urban Council in Cameroon for logistic support and Mr Onana Dieudonne and other colleagues at IRAD for assistance and guidance regarding tree identification. Dr. Hugh Glen provided the Latin descriptions and suggested names for the fungus for which we are most grateful.

References

  1. Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37CrossRefGoogle Scholar
  2. Anagnostakis SL (2001) American chestnut sprouts survival with biological control of the chestnut-blight fungus populations. For Ecol Manag 152:225–233CrossRefGoogle Scholar
  3. Batawila K, Kokou K, Koumaglo K, Gbéassor M, de Foucault B, Bouchet PH, Akpagana K (2005) Antifungal activities of five Combretaceae used in Togolese traditional medicine. Fitoterapia 76:264–268CrossRefPubMedGoogle Scholar
  4. Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94:1017–1031CrossRefGoogle Scholar
  5. Conradie E, Swart WJ, Wingfield MJ (1990) Cryphonectria canker of Eucalyptus, an important disease in plantation forestry in South Africa. South Afr For J 152:43–49Google Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Gibson IAS (1981) A canker disease of Eucalyptus new to Africa. FAO For Genet Res Info 10:23–24Google Scholar
  8. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  9. Gryzenhout M, Eisenberg BE, Coutinho TA, Wingfield BD, Wingfield MJ (2003) Pathogenicity of Cryphonectria eucalypti to Eucalyptus clones in South Africa. For Ecol Manag 176:427–437CrossRefGoogle Scholar
  10. Gryzenhout M, Myburg H, Van der Merwe NA, Wingfield BD, Wingfield MJ (2004) Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Stud Mycol 50:119–142Google Scholar
  11. Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ (2005) Rostraureum tropicale gen. sp. nov. (Diaporthales) associated with dying Terminalia ivorensis in Ecuador. Mycol Res 109:1029–1044CrossRefPubMedGoogle Scholar
  12. Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ (2006a) Cryphonectriaceae (Diaporthales), a new family including Cryphonectria, Chrysoporthe, Endothia, and allied genera. Mycologia 98:239–249CrossRefPubMedGoogle Scholar
  13. Gryzenhout M, Myburg H, Hodges CS, Wingfield BD, Wingfield MJ (2006b) Microthia, Holocryphia and Ursicullum, three new genera on Eucalyptus and Coccoloba for fungi previously known as Cryphonectria. Stud Mycol 55:35–52CrossRefPubMedGoogle Scholar
  14. Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, phylogeny, and ecology of bark infecting and tree killing fungi in the Cryphonectriaceae. APS Press, St. Paul, MinnesotaGoogle Scholar
  15. Heath RN, Gryzenhout M, Roux J, Wingfield MJ (2006) Discovery of the canker pathogen Chrysoporthe austroafricana on native Syzygium spp. in South Africa. Plant Dis 90:433–438CrossRefGoogle Scholar
  16. Heiniger U, Rigling D (1994) Biological control of chestnut blight in Europe. Ann Rev Phytopathol 32:581–599CrossRefGoogle Scholar
  17. Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195PubMedGoogle Scholar
  18. Hodges CS (1980) The taxonomy of Diaporthe cubensis. Mycologia 72:542–548CrossRefGoogle Scholar
  19. Hodges CS, Ferreira FA (1981) Korunomyces, a new genus of fungi imperfecti from Brazil. Mycologia 73:334–342CrossRefGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  21. Kamgan NG, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  22. Kamtchouing P, Kahpui SM, Djomeni Dzeufiet PD, Tedong L, Asongalem EA, Dimo T (2006) Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. J Ethnopharmacol 104:306–309CrossRefPubMedGoogle Scholar
  23. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518CrossRefPubMedGoogle Scholar
  24. Laird SA (1999) The management of forests for timber and non-timber forest products in central Africa. In: Sunderland TCH, Clark LE, Vantomme P (eds) Current research issues and prospects for conservation and development of nonwood forest products of Central Africa. FAO, Rome, pp 51–60Google Scholar
  25. Lamb AFA, Ntima OO (1971) Terminalia ivorensis: fast growing timber trees of the lowland tropics No. 5. Commonwealth Forestry Institute, OxfordGoogle Scholar
  26. Lumbsch HT, Huhndorf SM (2007) Notes on ascomycete systematics. Nos. 4408–4750. Myconet 13:59–99Google Scholar
  27. Micales JA, Stipes RJ (1987) A reexamination of the fungal genera Cryphonectria and Endothia. Phytopathology 77:650–654CrossRefGoogle Scholar
  28. Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116CrossRefPubMedGoogle Scholar
  29. Myburg H, Gryzenhout M, Heath R, Roux J, Wingfield BD, Wingfield MJ (2002) Cryphonectria canker on Tibouchina in South Africa. Mycol Res 106:1299–1306CrossRefGoogle Scholar
  30. Myburg H, Gryzenhout M, Wingfield BD, Stipes RJ, Wingfield MJ (2004) Phylogenetic relationships of Cryphonectria and Endothia species, based on DNA sequence data and morphology. Mycologia 96:990–1001CrossRefGoogle Scholar
  31. Nakabonge G, Gryzenhout M, Roux J, Wingfield BD, Wingfield MJ (2006a) Celoporthe dispersa gen. et sp. nov. from native Myrtales in South Africa. Stud Mycol 55:255–267CrossRefPubMedGoogle Scholar
  32. Nakabonge G, Roux J, Gryzenhout M, Wingfield MJ (2006b) Distribution of Chrysoporthe canker pathogens on Eucalyptus and Syzygium spp. in Eastern and Southern Africa. Plant Dis 90:734–740CrossRefGoogle Scholar
  33. Norgrove L, Hauser S (2002) Measured growth and tree biomass estimates of Terminalia ivorensis in the 3 years after thinning to different stand densities in an agrisilvicultural system in southern Cameroon. For Ecol Manag 166:261–270CrossRefGoogle Scholar
  34. Nylander JAA (2004) MrModeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  35. Ofosu-Asiedu A, Cannon P (1976) Terminalia ivorensis decline in Ghana. Pest Art News Sum 22:239–242Google Scholar
  36. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, SurreyGoogle Scholar
  37. Rossman AY, Farr DF, Castlebury LA (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48:135–144CrossRefGoogle Scholar
  38. Roux J, Myburg H, Wingfield BD, Wingfield MJ (2003) Biological and phylogenetic analysis suggest that two Cryphonectria species cause cankers of Eucalyptus in Africa. Plant Dis 87:1329–1332CrossRefGoogle Scholar
  39. Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G, Heath RN, Wingfield MJ (2005) Diseases of plantation forestry tree species in eastern and southern Africa. South Afr J Sci 101:409–413Google Scholar
  40. Swofford DL (1998) PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinaur Associates, Sunderland, MassachusettsGoogle Scholar
  41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  42. Thiombiano A, Schmidt M, Kreft H, Guinko S (2006) Influence du gradient climatique sur la distribution des espèces de Combretaceae au Burkina Faso (Afrique de l’ouest). Candollea 61:189–213Google Scholar
  43. Van Heerden SW, Wingfield MJ (2001) Genetic diversity of Cryphonectria cubensis in South Africa. Mycol Res 105:94–99CrossRefGoogle Scholar
  44. Venter M, Myburg H, Wingfield BD, Coutinho TA, Wingfield MJ (2002) A new species of Cryphonectria from South Africa and Australia, pathogenic on Eucalyptus. Sydowia 54:98–119Google Scholar
  45. Walker TJ, Old KM, Murray DIL (1985) Endothia gyrosa on Eucalyptus in Australia with notes on some other species of Endothia and Cryphonectria. Mycotaxon 23:353–370Google Scholar
  46. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: CR P, Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) Protocols: a guide to methods, applications. Academic Press, San Diego, pp 315–322Google Scholar
  47. Wingfield MJ (2003) Daniel McAlpine Memorial Lecture. Increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australas Plant Pathol 23:133–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Aime Didier B. Begoude
    • 1
    • 2
  • Marieka Gryzenhout
    • 1
  • Michael J. Wingfield
    • 1
  • Jolanda Roux
    • 1
  1. 1.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.Laboratoire Régional de Lutte Biologique et de Microbiologie Appliquée, Institut de la Recherche Agricole pour le Développement (IRAD)YaoundeCameroun

Personalised recommendations