Advertisement

Antonie van Leeuwenhoek

, Volume 98, Issue 3, pp 415–421 | Cite as

Jeotgalibacillus soli sp. nov., isolated from non-saline forest soil, and emended description of the genus Jeotgalibacillus

  • Yi-Guang Chen
  • De-Jiao Peng
  • Qi-Hui Chen
  • Yu-Qin Zhang
  • Shu-Kun Tang
  • Da-Chun Zhang
  • Qing-Zhong Peng
  • Wen-Jun Li
Original Paper

Abstract

A Gram-stain-positive, endospore-forming, motile, catalase- and oxidase-positive, aerobic, rod-shaped bacterium, designated strain JSM 081008T, was isolated from non-saline forest soil in China. Strain JSM 081008T was able to grow with 0–20% (w/v) NaCl, at pH 6.0–10.5 and at 10–45°C; optimum growth was observed with 2–5% (w/v) NaCl, at pH 7.0–8.0 and at 30–35°C. The peptidoglycan type was A1α linked directly through l-Lys. The major cellular fatty acids (>10% of the total) were anteiso-C15:0, iso-C15:0, anteiso-C17:0 and C16:0. The predominant respiratory quinone was menaquinone 7 and the genomic DNA G + C content of the strain was 42.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 081008T should be assigned to the genus Jeotgalibacillus and was related most closely to the type strains of Jeotgalibacillus alimentarius (sequence similarity 99.4%) and Jeotgalibacillus salarius (97.0%), followed by Jeotgalibacillus campisalis (95.4%) and Jeotgalibacillus marinus (95.2%). The combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the view that strain JSM 081008T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed. The type strain is JSM 081008T (=DSM 22174T = KCTC 13528T). An emended description of the genus Jeotgalibacillus is also presented.

Keywords

Jeotgalibacillus soli sp. nov Halophilic Non-saline soil 

Notes

Acknowledgements

This work was supported by grants from the National Basic Research Program of China (2010CB833800), National Natural Science Foundation of China (NSFC) (30970007), Jishou University (09JDY022) and International Cooperation Research Program of Yunnan Province (2009AC017). We are grateful to Mr Ke Huang for his excellent technical assistance.

References

  1. Atlas RM (1993) In Parks LC (ed) Handbook of microbiological media. CRC Press, Boca Raton, pp 666–672Google Scholar
  2. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL (2007) Salinicoccus kunmingensis sp., nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332CrossRefPubMedGoogle Scholar
  3. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  4. Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, LondonGoogle Scholar
  5. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363PubMedGoogle Scholar
  6. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  7. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33Google Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Felsenstein J (2002) PHYLIP (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  11. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127CrossRefGoogle Scholar
  12. Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239CrossRefPubMedGoogle Scholar
  13. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM (1985) Preparation of chromosomal, plasmid and phage DNA. In: Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (eds) Genetic manipulation of Streptomyces: a laboratory manual. F. Crowe and Sons, Norwich, pp 79–80Google Scholar
  14. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  15. Jahnke KD (1992) BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73CrossRefGoogle Scholar
  16. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  17. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  18. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  19. Rüger HJ (1983) Differentiation of Bacillus globisporus, Bacillus marinus comb. nov., Bacillus aminovorans, and Bacillus insolitus. Int J Syst Bacteriol 33:157–161CrossRefGoogle Scholar
  20. Rüger HJ, Richter G (1979) Bacillus globisporus subsp. marinus subsp. nov. Int J Syst Bacteriol 29:196–203CrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  23. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  24. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  25. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  28. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968Google Scholar
  29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  30. Yoon JH, Weiss N, Lee KC, Lee IS, Kang KH, Park YH (2001) Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, reclassification of Bacillus marinus Ruger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:2087–2093PubMedGoogle Scholar
  31. Yoon JH, Kim IG, Schumann P, Oh TK, Park YH (2004) Marinibacillus campisalis sp. nov., a moderate halophile isolated from a marine solar saltern in Korea, with emended description of the genus Marinibacillus. Int J Syst Evol Microbiol 54:1317–1321CrossRefPubMedGoogle Scholar
  32. Yoon JH, Kang SJ, Schumann P, Oh TK (2010) Jeotgalibacillus salarius sp. nov., isolated from a marine saltern, and reclassification of Marinibacillus marinus and Marinibacillus campisalis as Jeotgalibacillus marinus comb. nov. and Jeotgalibacillus campisalis comb. nov., respectively. Int J Syst Evol Microbiol 60:15–20CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yi-Guang Chen
    • 1
    • 2
    • 3
  • De-Jiao Peng
    • 1
  • Qi-Hui Chen
    • 1
  • Yu-Qin Zhang
    • 4
  • Shu-Kun Tang
    • 2
    • 3
  • Da-Chun Zhang
    • 1
  • Qing-Zhong Peng
    • 1
  • Wen-Jun Li
    • 2
    • 3
    • 5
  1. 1.College of Biology and Environmental SciencesJishou UniversityJishouPeople’s Republic of China
  2. 2.The Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China
  3. 3.Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China
  4. 4.Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China
  5. 5.Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouPeople’s Republic of China

Personalised recommendations