Advertisement

Antonie van Leeuwenhoek

, Volume 98, Issue 2, pp 225–236 | Cite as

The complex whiJ locus mediates environmentally sensitive repression of development of Streptomyces coelicolor A3(2)

  • José A. Aínsa
  • Nick Bird
  • N. Jamie Ryding
  • Kim C. Findlay
  • Keith F. ChaterEmail author
Original Paper

Abstract

A segment of DNA was isolated that complemented several poorly characterised sporulation-defective white-colony mutants of Streptomyces coelicolor A3(2) from an early collection (Hopwood et al., J Gen Microbiol 61: 397–408, 1970). Complementation was attributable to a gene, SCO4543, named whiJ, encoding a likely DNA-binding protein. Surprisingly, although some mutations in whiJ had a white colony phenotype, complete deletion of the wild-type or mutant gene gave a wild-type morphology. The whiJ gene is a member of a large paralogous set of S. coelicolor genes including abaAorfA, which regulates antibiotic production; and genes flanking whiJ are paralogues of other gene classes that are often associated with whiJ-like genes (Gehring et al., Proc Natl Acad Sci USA 97: 9642–9647, 2000). Thus, the small gene SCO4542 encodes a paralogue of the abaAorfD gene product, and SCO4544 encodes a paralogue of a family of likely anti-sigma factors (including the product of abaAorfB). Deletion of SCO4542 resulted in a medium-dependent bald- or white-colony phenotype, which could be completely suppressed by the simultaneous deletion of whiJ. A model is proposed in which WhiJ binds to operator sequences to repress developmental genes, with repression being released by interaction with the WhiJ-associated SCO4542 protein. It is suggested that this activity of SCO4542 protein is prevented by an unknown signal.

Keywords

whi mutants Streptomyces coelicolor Microbial development Regulation of secondary metabolism XRE family Anti-sigma factors 

Notes

Acknowledgements

We gratefully thank Helen Kieser and David Hopwood for strains recovered from archives, Govind Chandra for carrying out bioinformatic analysis and Kay Fowler for technical advice. This work was supported by grants from the John Innes Foundation (NJR) and the BBSRC grant CAD 04380 (JAA). KFC is a John Innes Foundation Emeritus Fellow.

References

  1. Aínsa JA, Ryding NJ, Hartley N, Findlay KC, Bruton CJ, Chater KF (2000) WhiA, a protein of unknown function conserved among gram-positive bacteria, is essential for sporulation in Streptomyces coelicolor A3(2). J Bacteriol 182:5470–5478CrossRefPubMedGoogle Scholar
  2. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefPubMedGoogle Scholar
  3. Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaría RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF (2004) SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51:1615–1628CrossRefPubMedGoogle Scholar
  4. Bibb MJ, Molle V, Buttner MJ (2000) Sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182:4606–4616CrossRefPubMedGoogle Scholar
  5. Bierman M, Logan R, O’Brien K, Seno ET, Rao N, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from E. coli to Streptomyces spp. Gene 116:43–49CrossRefPubMedGoogle Scholar
  6. Chater KF (1972) A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72:9–28PubMedGoogle Scholar
  7. Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4:667–673CrossRefPubMedGoogle Scholar
  8. Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672CrossRefPubMedGoogle Scholar
  9. Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15CrossRefPubMedGoogle Scholar
  10. Chater KF, Merrick MJ (1976) Approaches to the study of differentiation in Streptomyces coelicolor A3(2) In: Macdonald KD (ed) 2nd international symposium on the genetics of industrial micro-organisms. Academic Press, London, pp 583–593Google Scholar
  11. Chen C-C, Lewis RJ, Harris R, Yudkin MD, Delumeau O (2003) A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis. Mol Microbiol 49:1657–1669CrossRefPubMedGoogle Scholar
  12. Cho YH, Lee EJ, Ahn BE, Roe JH (2001) SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 42:205–214CrossRefPubMedGoogle Scholar
  13. Dalton KA, Thibessard A, Hunter JI, Kelemen GH (2007) A novel compartment, the ‘subapical stem’ of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol Microbiol 64:719–737CrossRefPubMedGoogle Scholar
  14. Eccleston M, Ali R, Seyler R, Westpheling J, Nodwell J (2002) Structural and genetic analysis of the BldB protein of Streptomyces coelicolor. J Bacteriol 184:4270–4276CrossRefPubMedGoogle Scholar
  15. Fernández-Moreno M, Martin-Triana AJ, Martinez E, Niemi J, Kieser H, Hopwood D, Malpartida F (2002) abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J Bacteriol 174:2958–2967Google Scholar
  16. Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49CrossRefPubMedGoogle Scholar
  17. Gehring A, Nodwell J, Beverley S, Losick R (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci USA 97:9642–9647CrossRefPubMedGoogle Scholar
  18. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546CrossRefPubMedGoogle Scholar
  19. Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128CrossRefPubMedGoogle Scholar
  20. Helmann JD (1998) Anti-sigma factors. Curr Opin Microbiol 2:135–141CrossRefGoogle Scholar
  21. Hillemann D, Pühler A, Wohlleben W (1991) Gene disruption and gene replacement in Streptomyces via single-stranded DNA transformation of integration vectors. Nucleic Acids Res 19:727–731CrossRefPubMedGoogle Scholar
  22. Hopwood DA, Wildermuth H, Palmer HM (1970) Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61:397–408PubMedGoogle Scholar
  23. Kelemen GH, Viollier PH, Tenor JL, Marri L, Buttner MJ, Thompson CJ (2001) A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol Microbiol 40:804–814CrossRefPubMedGoogle Scholar
  24. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  25. Kim ES, Song JY, Kim DW, Chater KF, Lee KJ (2008) A possible extended family of regulators of sigma factor activity in Streptomyces coelicolor. J Bacteriol 190:7559–7566CrossRefPubMedGoogle Scholar
  26. Lee E, Karoonuthaisiri N, Kim H, Park J, Cha C, Kao C, Roe J (2005) A master regulator sigma governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57:1252–1264CrossRefPubMedGoogle Scholar
  27. McNeil DJ (1988) Characterisation of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170:5607–5612Google Scholar
  28. Merrick M (1976) A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol 96:299–315PubMedGoogle Scholar
  29. Mittenhuber G (2002) A phylogenomic study of the general stress response sigma factor σB of Bacillus subtilis and its regulatory proteins. J Mol Microbiol Biotechnol 4:427–452PubMedGoogle Scholar
  30. Noens EEE, Mersinias V, Traag BA, Smith CP, Koerten HK, Van Wezel GP (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol 58:929–944CrossRefPubMedGoogle Scholar
  31. Pope MK, Green B, Westpheling J (1998) The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol 180:1556–1562PubMedGoogle Scholar
  32. Potuckova L, Kelemen GH, Findlay KC, Lonetto MA, Buttner MJ, Kormanec J (1995) A new RNA polymerase sigma factor, sigma(F), is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17:37–48CrossRefPubMedGoogle Scholar
  33. Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96CrossRefPubMedGoogle Scholar
  34. Ryding NJ, Kelemen GH, Whatling CA, Flärdh K, Buttner MJ, Chater KF (1998) A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 29:343–357CrossRefPubMedGoogle Scholar
  35. Ryding NJ, Bibb MJ, Molle V, Findlay KC, Chater KF, Buttner MJ (1999) New sporulation loci in Streptomyces coelicolor A3(2). J Bacteriol 181:5419–5425PubMedGoogle Scholar
  36. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  37. Sevcikova B, Benada O, Kofronova O, Kormanec J (2001) Stress response sigma factor sigma(H) is essential for morphological differentiation of Streptomyces coelicolor A3(2). Arch Microbiol 177:98–106CrossRefPubMedGoogle Scholar
  38. Traag BA, Van Wezel GP (2008) The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie Van Leeuwenhoek 94:85–97CrossRefPubMedGoogle Scholar
  39. Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ (2003) Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol 47:699–714CrossRefPubMedGoogle Scholar
  40. Xu Q, Traag BA, Willemse J, McMullan D, Miller MD, Elsliger MA, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Chruszcz M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Minor W, Mommaas AM, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Wang S, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA, van Wezel GP (2009) Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. J Biol Chem 284:25268–25279CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • José A. Aínsa
    • 1
    • 2
  • Nick Bird
    • 1
  • N. Jamie Ryding
    • 1
    • 3
  • Kim C. Findlay
    • 1
  • Keith F. Chater
    • 1
    Email author
  1. 1.Department of Molecular MicrobiologyJohn Innes Centre, Norwich Research Park, ColneyNorwichUK
  2. 2.Departamento de Microbiología, Facultad de MedicinaUniversidad de ZaragozaZaragozaSpain
  3. 3.Verenium CorporationSan DiegoUSA

Personalised recommendations