Advertisement

Antonie van Leeuwenhoek

, Volume 99, Issue 2, pp 403–408 | Cite as

Maintenance of previously uncultured freshwater archaea from anoxic waters under laboratory conditions

  • Anna Plasencia
  • Lluís Bañeras
  • Marc Llirós
  • Emilio O. Casamayor
  • Carles BorregoEmail author
Short Communication

Abstract

Culture conditions for the maintenance of previously uncultured members of the Archaea thriving in anoxic water layers of stratified freshwater lakes are described. The proposed enrichment conditions, based on the use of defined medium composition and the maintenance of anoxia, have been proven effective for the maintenance of the archaeal community with virtually no changes over time for periods up to 6 months as revealed by a PCR-DGGE analysis. Phylotypes belonging to groups poorly represented in culture collections such as the Deep-Sea Hydrothermal Vent Euryarchaeota (DHVE) and the Miscellaneous Crenarchaeotic Group (MCG) were maintained and selectively enriched when compared to the correspondent indigenous planktonic archaeal community.

Keywords

Archaea Enrichment cultures Freshwater Crenarchaeota Oxic/anoxic interfaces Stratified lakes 

Notes

Acknowledgments

This work was supported by coordinated projects REN2003-08333 and CRENYC CGL2006-12058 from the Spanish Ministerio de Educación y Ciencia (MEC) to CMB and EOC. We thank A. Camacho and A. Picazo from the Institut Cavanilles de Biodiversitat i Biologia Evolutiva of the University of Valencia for their assistance and valuable support during the sampling campaign in Cuenca. A. Plasencia and M. Llirós benefit from a FI doctoral fellow from the Generalitat de Catalunya and from a FPI doctoral fellow from the Spanish MEC, respectively.

References

  1. Auguet JC, Casamayor EO (2008) A hotspot for cold Crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086CrossRefPubMedGoogle Scholar
  2. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  3. Casamayor EO, Borrego CM (2009) Archaea. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford, pp 167–181CrossRefGoogle Scholar
  4. Casamayor EO, Muyzer G, Pedrós-Alió C (2001) Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing. Aquat Microb Ecol 25:237–246CrossRefGoogle Scholar
  5. Chaban B, Ng SYM, Jarrell KF (2006) Archaeal habitats from the extreme to the ordinary. Can J Microbiol 52:73–116CrossRefPubMedGoogle Scholar
  6. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818CrossRefPubMedGoogle Scholar
  7. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefPubMedGoogle Scholar
  8. DeLong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654CrossRefPubMedGoogle Scholar
  9. Donachie SP, Foster JS, Brown MV (2007) Culture clash: challenging the dogma of microbial diversity. ISME J 1:97–99CrossRefPubMedGoogle Scholar
  10. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826CrossRefPubMedGoogle Scholar
  11. Gray ND, Head IM (2007) Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492CrossRefGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105(6):2134–2139CrossRefPubMedGoogle Scholar
  14. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319CrossRefPubMedGoogle Scholar
  15. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K et al (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235CrossRefPubMedGoogle Scholar
  16. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546CrossRefPubMedGoogle Scholar
  17. Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP (2008) Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in yellowstone National Park. Appl Environ Microbiol 74(4):942–949CrossRefPubMedGoogle Scholar
  18. Llirós M, Casamayor EO, Borrego CM (2008) High archaeal richness in the water column of a freshwater sulphurous karstic lake along an inter-annual study. FEMS Microbiol Ecol 66:331–342CrossRefPubMedGoogle Scholar
  19. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefPubMedGoogle Scholar
  20. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 1–27Google Scholar
  21. Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60:351–357CrossRefPubMedGoogle Scholar
  22. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941CrossRefPubMedGoogle Scholar
  23. Schleper C (2008) Metabolism of the deep. Nature 456(11):712–714CrossRefPubMedGoogle Scholar
  24. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  25. Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep south african gold mines. Appl Environ Microbiol 67:5750–5760CrossRefPubMedGoogle Scholar
  26. Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18CrossRefPubMedGoogle Scholar
  27. Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas basin: Evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007CrossRefPubMedGoogle Scholar
  28. Widdel F, Bak F (1992) Gram-negative mesophilic sulphate reducing bacteria. In: Balows THG, Dworkin AM, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3353–3378Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anna Plasencia
    • 1
  • Lluís Bañeras
    • 1
  • Marc Llirós
    • 1
  • Emilio O. Casamayor
    • 2
  • Carles Borrego
    • 1
    Email author
  1. 1.Group of Molecular Microbial Ecology, Institute of Aquatic EcologyUniversity of GironaGironaSpain
  2. 2.Group of Limnology, Department of Continental EcologyCentre d’Estudis Avançats de Blanes-CSICBlanesSpain

Personalised recommendations