Antonie van Leeuwenhoek

, Volume 97, Issue 2, pp 189–200 | Cite as

Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans

  • Maria Egervärn
  • Hans Lindmark
  • Johan Olsson
  • Stefan Roos
Original Paper


The potential of Lactobacillus reuteri as a donor of antibiotic resistance genes in the human gut was investigated by studying the transferability of the tetracycline resistance gene tet(W) to faecal enterococci, bifidobacteria and lactobacilli. In a double-blind clinical study, seven subjects consumed L. reuteri ATCC 55730 harbouring a plasmid-encoded tet(W) gene (tet(W)-reuteri) and an equal number of subjects consumed L. reuteri DSM 17938 derived from the ATCC 55730 strain by the removal of two plasmids, one of which contained the tet(W) gene. Faecal samples were collected before, during and after ingestion of 5 × 108 CFU of L. reuteri per day for 14 days. Both L. reuteri strains were detectable at similar levels in faeces after 14 days of intake but neither was detected after a two-week wash-out period. After enrichment and isolation of tetracycline resistant enterococci, bifidobacteria and lactobacilli from each faecal sample, DNA was extracted and analysed for presence of tet(W)-reuteri using a real-time PCR allelic discrimination method developed in this study. No tet(W)-reuteri signal was produced from any of the DNA samples and thus gene transfer to enterococci, bifidobacteria and lactobacilli during intestinal passage of the probiotic strain was non-detectable under the conditions tested, although transfer at low frequencies or to the remaining faecal bacterial population cannot be excluded.


Allelic discrimination Gene transferability Human gut Lactobacillus reuteri Tetracycline resistance tet(W) gene 


  1. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137CrossRefPubMedGoogle Scholar
  2. Aires J, Doucet-Populaire F, Butel MJ (2007) Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol 73:2751–2754CrossRefPubMedGoogle Scholar
  3. Årsköld E, Svensson M, Grage H, Roos S, Radstrom P, van Niel EW (2007) Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730. Int J Food Microbiol 116:159–167CrossRefPubMedGoogle Scholar
  4. Ballongue J (2004) Bifidobacteria and Probiotic Action. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic Acid Bacteria—Microbiological and Functional Aspects, 3rd edn. Marcel Dekker Inc, New York, pp 67–123Google Scholar
  5. Båth K, Roos S, Wall T, Jonsson H (2005) The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253:75–82CrossRefPubMedGoogle Scholar
  6. Beerens H (1998) Bifidobacteria as indicators of faecal contamination in meat and meat products: detection, determination of origin and comparison with Escherichia coli. Int J Food Microbiol 40:203–207CrossRefPubMedGoogle Scholar
  7. Cars O, Molstad S, Melander A (2001) Variation in antibiotic use in the European Union. Lancet 357:1851–1853CrossRefPubMedGoogle Scholar
  8. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260CrossRefPubMedGoogle Scholar
  9. Chung TC, Axelsson L, Lindgren S, Dobrogosz WJ (1989) In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb Ecol Health Dis 2:137–144CrossRefGoogle Scholar
  10. Danielsen M (2002) Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48:98–103CrossRefPubMedGoogle Scholar
  11. Delgado S, Florez AB, Mayo B (2005) Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Curr Microbiol 50:202–207CrossRefPubMedGoogle Scholar
  12. EFSA (2008) Scientific opinion of the panel on biological hazards on a request from the European food safety authority on foodborne antimicrobial resistance as a biological hazard. The EFSA J 765:1–87Google Scholar
  13. Egervärn M, Danielsen M, Roos S, Lindmark H, Lindgren S (2007) Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. J Food Prot 70:412–418PubMedGoogle Scholar
  14. Egervärn M, Roos S, Lindmark H (2009) Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum. J Appl Microbiol 107(5):1658–1668CrossRefPubMedGoogle Scholar
  15. Feld L, Schjorring S, Hammer K, Licht TR, Danielsen M, Krogfelt K, Wilcks A (2008) Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J Antimicrob Chemother 61:845–852CrossRefPubMedGoogle Scholar
  16. Florez AB, Ammor MS, Alvarez-Martin P, Margolles A, Mayo B (2006) Molecular analysis of tet(W) gene-mediated tetracycline resistance in dominant intestinal Bifidobacterium species from healthy humans. Appl Environ Microbiol 72:7377–7379CrossRefPubMedGoogle Scholar
  17. Florez AB, Ammor MS, Mayo B, van Hoek AH, Aarts HJ, Huys G (2008) Antimicrobial susceptibility profiles of 32 type strains of Lactobacillus, Bifidobacterium, Lactococcus and Streptococcus spp. Int J Antimicrob Agents 31:484–486CrossRefPubMedGoogle Scholar
  18. Flórez AB, Tosi L, Danielsen M, VW A, Bardowski J, Morelli L, Mayo B (2008) Resistance-susceptibility profiles of Lactococcus lactis and Streptococcus thermophilus strains to eight antibiotics and proposition of new cut-offs. International Journal of Probiotics and Prebiotics 3:249–256Google Scholar
  19. Franz CM, Holzapfel WH (2004) The Genus Enterococcus: Biotechnological and Safety Issues. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic Acid Bacteria—Microbiological and Functional Aspects, 3rd edn. Marcel Dekker, Inc, New York, pp 199–247Google Scholar
  20. Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130CrossRefPubMedGoogle Scholar
  21. Gibson NJ (2006) The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363:32–47CrossRefPubMedGoogle Scholar
  22. Hunter PR, Wilkinson DC, Catling LA, Barker GC (2008) Meta-analysis of experimental data concerning antimicrobial resistance gene transfer rates during conjugation. Appl Environ Microbiol 74:6085–6090CrossRefPubMedGoogle Scholar
  23. Igimi S, Ryu CH, Park SH, Sasaki Y, Sasaki T, Kumagai S (1996) Transfer of conjugative plasmid pAM beta 1 from Lactococcus lactis to mouse intestinal bacteria. Lett Appl Microbiol 23:31–35CrossRefPubMedGoogle Scholar
  24. Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2–2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166CrossRefPubMedGoogle Scholar
  25. Kazimierczak KA, Flint HJ, Scott KP (2006) Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 50:2632–2639CrossRefPubMedGoogle Scholar
  26. Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Muller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912CrossRefPubMedGoogle Scholar
  27. Korhonen J, Danielsen M, Mayo B, Egervärn M, Axelsson L, Huys G, VW A (2008) Antimicrobial susceptibility and proposed microbiological cut-off values of lactobacilli by phenotypic determination. International Journal of Probiotics and Prebiotics 3:257–268Google Scholar
  28. Lester CH, Frimodt-Møller N, Sørensen TL, Monnet DL, Hammerum AM (2006) In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50:596–599CrossRefPubMedGoogle Scholar
  29. Licht TR, Wilcks A (2006) Conjugative gene transfer in the gastrointestinal environment. Adv Appl Microbiol 58:77–95CrossRefPubMedGoogle Scholar
  30. Mater DD, Langella P, Corthier G, Flores MJ (2008) A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 14:123–127CrossRefPubMedGoogle Scholar
  31. McConnell MA, Mercer AA, Tannock GW (1991) Transfer of plasmid pAMβ1 between members of the normal microflora inhabiting the murine digestive tract and modification of the plasmid in a Lactobacillus reuteri host. Microb Ecol Health Dis 4:343–355CrossRefGoogle Scholar
  32. Mikelsaar M, Mändar R, Sepp E, Annuk H (2004) Human Lactic Acid Microflora and Its Role in the Welfare of the Host. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic Acid Bacteria—Microbiological and Functional Aspects, 3rd edn. Marcel Dekker Inc, New York, pp 453–505Google Scholar
  33. Morelli L, Sarra PG, Bottazzi V (1988) In vivo transfer of pAM beta 1 from Lactobacillus reuteri to Enterococcus faecalis. J Appl Bacteriol 65:371–375PubMedGoogle Scholar
  34. Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55:38–44CrossRefPubMedGoogle Scholar
  35. Ouoba LI, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121:217–224CrossRefPubMedGoogle Scholar
  36. Rada V (1997) Detection of Bifidobacterium species by enzymatic methods and antimicrobial susceptibility testing. Biotechnol Tech 11:909–912CrossRefGoogle Scholar
  37. Rosander A, Connolly E, Roos S (2008) Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730, characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol 74:6032–6040CrossRefPubMedGoogle Scholar
  38. Saarela M, Maukonen J, von Wright A, Vilpponen-Salmela T, Patterson AJ, Scott KP, Hamynen H, Matto J (2007) Tetracycline susceptibility of the ingested Lactobacillus acidophilus LaCH-5 and Bifidobacterium animalis subsp. lactis Bb-12 strains during antibiotic/probiotic intervention. Int J Antimicrob Agents 29:271–280CrossRefPubMedGoogle Scholar
  39. Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416CrossRefPubMedGoogle Scholar
  40. Schlundt J, Saadbye P, Lohmann B, Jacobsen BL, Nielsen EM (1994) Conjugal transfer of plasmid DNA between Lactococcus lactis strains and distribution of transconjugants in the digestive tract of gnotobiotic rats. Microb Ecol Health Dis 7:59–69CrossRefGoogle Scholar
  41. Scott KP, Melville CM, Barbosa TM, Flint HJ (2000) Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Antimicrob Agents Chemother 44:775–777CrossRefPubMedGoogle Scholar
  42. Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76:115–137CrossRefPubMedGoogle Scholar
  43. Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K (2004) Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70:1176–1181CrossRefPubMedGoogle Scholar
  44. van Hoek AH, Margolles A, Domig KJ, Korhonen J, Życka-Krzesińska J, Bardowski J, Danielsen M, Huys G, Morelli L, Aarts H (2008) Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. International Journal of Probiotics and Prebiotics 3:271–280Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maria Egervärn
    • 1
    • 2
  • Hans Lindmark
    • 1
  • Johan Olsson
    • 3
  • Stefan Roos
    • 2
  1. 1.Microbiology DivisionNational Food AdministrationUppsalaSweden
  2. 2.Department of MicrobiologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Good Food PracticeUppsalaSweden

Personalised recommendations