Antonie van Leeuwenhoek

, Volume 97, Issue 2, pp 131–142 | Cite as

Phylogenetic analysis of the genus Kribbella based on the gyrB gene: proposal of a gyrB-sequence threshold for species delineation in the genus Kribbella

  • Bronwyn M. Kirby
  • Gareth J. Everest
  • Paul R. Meyers
Original Paper


Given the advances in molecular biology, many microbial taxonomists feel that a sequencing based method should be developed that can replace DNA-DNA hybridisation for species delineation. The potential of the gyrB gene to be used for phylogenetic studies has been investigated within a number of actinobacterial genera, including Gordonia, Micromonospora and the whorl-forming Streptomyces species. This study aimed to determine whether the gyrB gene can discriminate between type strains of the genus Kribbella. Previous studies, in the genus Micromonospora, have found that a gyrB-based genetic distance of 0.014 correlates to a DNA relatedness of 70% and that those strains with a genetic distance of greater than 0.014 are likely to be distinct species. In this study, the gyrB-based genetic distances between Kribbella type strains were found to range from 0.0164 to 0.1495, supporting the use of the 0.014 genetic-distance value as the threshold for species delineation within this genus. Phylogenetic analysis based on the gyrB gene had improved resolution (longer branch lengths) compared to that based on the 16S rRNA gene sequence. Based on this study, the gyrB gene can be used to distinguish between Kribbella type strains. Furthermore, it is proposed that a 390-nucleotide sequence of the gyrB gene of a Kribbella isolate is sufficient to assess whether it is likely to represent a new species, before time and effort is invested in polyphasic taxonomic characterisation of the isolate.


Kribbella Nocardioidaceae gyrB Actinobacteria Phylogeny Genetic distance Horizontal gene transfer 



The authors wish to thank Di James, University of Cape Town (UCT), for DNA sequencing, and Iulia Sfarlea and Ndatiyaroo Agapitus for isolating K. solani strain YB2, Dr Martha Trujillo for providing the type strain of K. lupini and Drs Ingrid Groth and Karin Martin for providing the two non-type strains of K. aluminosa. Bronwyn Kirby held a Scarce Skills Scholarship from the National Research Foundation (NRF) and a UCT Postgraduate Research Associateship. Gareth Everest held a Scarce Skills Scholarship from the NRF, a KW Johnstone Scholarship and a Benfara Scholarship, UCT. This work was supported by research grants to Paul Meyers from the NRF (Grant number 2073133) and the University Research Committee (UCT).


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Blackwood KS, He C, Gunton J, Turenne CY, Wolfe J, Kabaini AM (2000) Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol 38:2846–2852PubMedGoogle Scholar
  3. Carlsohn MR, Groth I, Spröer C, Schϋtze B, Saluz H-P, Munder T, Stackebrandt E (2007) Kribbella aluminosa sp. nov., isolated from a medieval alum slate mine. Int J Syst Evol Microbiol 57:1943–1947CrossRefPubMedGoogle Scholar
  4. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167CrossRefPubMedGoogle Scholar
  5. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  6. Everest GJ, Meyers PR (2008) Kribbella hippodromi sp. nov., isolated from soil from a racecourse in South Africa. Int J Syst Evol Microbiol 58:443–446CrossRefPubMedGoogle Scholar
  7. Everest GJ, Meyers PR (2009) The use of gyrB sequence analysis in the phylogeny of the genus Amycolatopsis. Antonie van Leeuwenhoek 95:1–11CrossRefPubMedGoogle Scholar
  8. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Sys Bacteriol 42:166–170Google Scholar
  9. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739CrossRefPubMedGoogle Scholar
  10. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW (1996) HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34:818–823PubMedGoogle Scholar
  11. Gtari M, Brusetti L, Hassen A, Mora D, Daffonchio D, Boudabous A (2007) Genetic diversity among Elaeagnus compatible Frankia strains and sympatric-related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. Soil Biol Biochem 39:372–377CrossRefGoogle Scholar
  12. Harayama S, Kasai H (2006) In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes, Chap 5. Springer, BerlinGoogle Scholar
  13. Hatano K, Nishii T, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA-DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529CrossRefPubMedGoogle Scholar
  14. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  15. Kasai H, Ezaki T, Harayama S (2000a) Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol 38:301–308PubMedGoogle Scholar
  16. Kasai H, Tamura T, Harayama S (2000b) Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134PubMedGoogle Scholar
  17. Keswani J, Whitman WB (2001) Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678PubMedGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  19. Kirby BM, Le Roes M, Meyers PR (2006) Kribbella karoonensis sp. nov. and Kribbella swartbergensis sp. nov., isolated from soil from the Western Cape, South Africa. Int J Syst Evol Microbiol 56:1097–1101CrossRefPubMedGoogle Scholar
  20. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Ratcliff RM, Nevo E, Cohan FM (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. PNAS 105:2504–2509CrossRefPubMedGoogle Scholar
  21. Kroppenstedt RM, Mayilraj S, Wink JM, Kallow W, Schumann P, Secondini C, Stackebrandt E (2005) Eight new species of the genus Micromonospora, Micromonospora citrea sp. nov., Micromonospora echinaurantiaca sp. nov., Micromonospora echinofusca sp. nov., Micromonospora fulviviridis sp. nov., Micromonospora inyonensis sp. nov., Micromonospora peucetia sp. nov., Micromonospora sagamiensis sp. nov., and Micromonospora viridifaciens sp. nov. Syst Appl Microbiol 28:328–339CrossRefPubMedGoogle Scholar
  22. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  23. Le Roes M, Goodwin CM, Meyers PR (2008) Gordonia lacunae sp. nov., isolated from an estuary. Syst Appl Microbiol 31:17–23CrossRefPubMedGoogle Scholar
  24. Li W-J, Wang D, Zhang Y-Q, Schumann P, Stackebrandt E, Xu L-H, Jiang C-L (2004) Kribbella antibiotica sp. nov., a novel nocardioform actinomycete strain isolated from soil in Yunnan, China. Syst Appl Microbiol 27:160–165CrossRefPubMedGoogle Scholar
  25. Li W-J, Wang D, Zhang Y-Q, Xu L-H, Jiang C-L (2006) Kribbella yunnanensis sp. nov., Kribbella alba sp. nov., two novel species of genus Kribbella isolated from soils in Yunnan, China. Syst Appl Microbiol 29:29–35CrossRefPubMedGoogle Scholar
  26. Maiden MCJ (2006) Multilocus sequence typing of bacteria. Ann Rev Microbiol 60:561–588CrossRefGoogle Scholar
  27. Park Y, Yoon J, Shin YK, Suzuki K, Kudo T, Seino A, Kim H, Lee J, Lee ST (1999) Classification of ‘Nocardioides fulvus’ IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov. Int J Syst Bacteriol 49:743–752PubMedGoogle Scholar
  28. Richert K, Brambilla E, Stackebrandt E (2005) Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales. J Microbiol Methods 60:115–123CrossRefPubMedGoogle Scholar
  29. Richert K, Brambilla E, Stackebrandt E (2007) The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16S rRNA genes. Syst Appl Microbiol 30:102–108CrossRefPubMedGoogle Scholar
  30. Rosselló-Mora R (2006) DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Berlin Chap 2Google Scholar
  31. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759CrossRefPubMedGoogle Scholar
  33. Shen F-T, Lu H-L, Lin J-L, Huang W-S, Arun AB, Young C-C (2006a) Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res Microbiol 157:367–375CrossRefPubMedGoogle Scholar
  34. Shen F-T, Goodfellow M, Jones AL, Chen Y-P, Arun AB, Lai W-A, Rekha PD, Young CC (2006b) Gordonia soli sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 56:2597–2601CrossRefPubMedGoogle Scholar
  35. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  36. Sohn K, Hong SG, Bae KS, Chun J (2003) Transfer of Hongia koreensis Lee et al. 2000 to the genus Kribbella Park et al. 1999 as Kribbella koreensis comb. nov. Int J Syst Evol Microbiol 53:1005–1007CrossRefPubMedGoogle Scholar
  37. Song J, Kim B, Hong S, Cho H, Sohn K, Chun J, Suh J (2004) Kribbella solani sp. nov. and Kribbella jejuensis sp. nov., isolated from potato tuber and soil in Jeju, Korea. Int J Syst Evol Microbiol 54:1345–1348CrossRefPubMedGoogle Scholar
  38. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  39. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden CJ et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047CrossRefPubMedGoogle Scholar
  40. Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258PubMedGoogle Scholar
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  42. Trujillo ME, Kroppenstedt RM, Schumann P, Martínez-Molina E (2006) Kribbella lupini sp. nov. isolated from the roots of Lupinus angustifolius. Int J Syst Evol Microbiol 56:407–411CrossRefPubMedGoogle Scholar
  43. Urzì C, De Leo F, Schumann P (2008) Kribbella catacumbae sp. nov. and Kribbella sancticallisti sp. nov., isolated from whitish-grey patinas in the catacombs of St. Callistus in Rome, Italy. Int J Syst Evol Microbiol 58:2090–2097CrossRefPubMedGoogle Scholar
  44. Wang Y, Zhang Z, Ruan J (1996) A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov. Int J Syst Bacteriol 46:933–938PubMedCrossRefGoogle Scholar
  45. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  46. Wood SA, Kirby BM, Goodwin CM, Le Roes M, Meyers PR (2007) PCR screening reveals unexpected antibiotic biosynthetic potential in Amycolatopsis sp. strain UM16. J Appl Microbiol 102:245–253Google Scholar
  47. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109PubMedGoogle Scholar
  48. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Bronwyn M. Kirby
    • 1
    • 2
  • Gareth J. Everest
    • 1
  • Paul R. Meyers
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
  2. 2.Institute for Microbial Biotechnology and MetagenomicsUniversity of the Western CapeCape TownSouth Africa

Personalised recommendations