Antonie van Leeuwenhoek

, 96:487 | Cite as

Steady state growth space study of Lactococcus lactis in D-stat cultures

  • Petri-Jaan Lahtvee
  • Kaspar Valgepea
  • Ranno Nahku
  • Kristo Abner
  • Kaarel Adamberg
  • Raivo Vilu
Original Paper

Abstract

Growth space of Lactococcus lactis subsp. lactis IL1403 was studied at constant growth rate using D-stat cultivation technique. Starting from steady state conditions in a chemostat culture (μ = 0.2 h−1), the pH and/or temperature were continuously changed in the range of 5.4–6.4 and 26–34°C, respectively, followed by the return to the initial environmental conditions. Based on substrate consumption and product formation yields and expression changes of 1,920 genes, it was shown that changes of physiological state were not dependent on the direction of movement (from pH 6.3 to 5.4 or from 5.4 to 6.3), showing that quasi steady state values in D-stat corresponded to the steady state values in chemostats. Relative standard deviation of growth characteristics in triplicate D-stat experiments was below 10%. Continuing the experiment and reestablishing initial growth conditions revealed in average 7% difference (hysteresis) in growth characteristics when comparing chemostat steady state cultures prior and after the change of environmental conditions. Similarly, shifts were also seen at gene expression levels. The large amount of quantitatively reliable data obtained in this study provided a new insight into dynamic properties of bacterial physiology, and can be used for describing the growth space of microorganisms by modeling cell metabolism.

Keywords

Continuous culture Lactococcus lactis Acid stress Growth space Transcriptome 

Supplementary material

10482_2009_9363_MOESM1_ESM.xls (46 kb)
Supplementary material 1 (XLS 46 kb)

References

  1. Adamberg K, Lahtvee P, Valgepea K, Abner K, Vilu R (2009) Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures. Antonie Van Leeuwenhoek 95(3):219–226CrossRefPubMedGoogle Scholar
  2. Dressaire C, Redon E, Milhem H, Besse P, Loubière P, Cocaign-Bousquet M (2008) Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 9:343CrossRefPubMedGoogle Scholar
  3. Even S, Lindley ND, Cocaign-Bousquet M (2001) Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol 183(13):3817–3824CrossRefPubMedGoogle Scholar
  4. Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149(Pt 7):1935–1944CrossRefPubMedGoogle Scholar
  5. Francis JC, Hansche PE (1973) Directed evolution of metabolic pathways in microbial populations II. A repeatable adaptation in Saccharomyces cerevisiae. Genetics 74(2):259–265PubMedGoogle Scholar
  6. Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151(10):3153–3159CrossRefPubMedGoogle Scholar
  7. Jensen NBS, Melchiorsen CR, Jokumsen KV, Villadsen J (2001) Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl Environ Microbiol 67(6):2677–2682CrossRefPubMedGoogle Scholar
  8. Jobé AM, Herwig C, Surzyn M, Walker B, Marison I, von Stockar U (2003) Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol Bioeng 82(6):627–639CrossRefPubMedGoogle Scholar
  9. Kasemets K, Drews M, Nisamedtinov I, Adamberg K, Paalme T (2003) Modification of A-stat for the characterization of microorganisms. J Microbiol Methods 55(1):187–200CrossRefPubMedGoogle Scholar
  10. Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):3–27CrossRefPubMedGoogle Scholar
  11. Le Marc Y, Pin C, Baranyi J (2005) Methods to determine the growth domain in a multidimensional environmental space. Int J Food Microbiol 100(1–3):3–12CrossRefPubMedGoogle Scholar
  12. Maharjan RP, Seeto S, Ferenci T (2007) Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 189(6):2350–2358CrossRefPubMedGoogle Scholar
  13. O’Sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65(6):2287–2293PubMedGoogle Scholar
  14. Sánchez B, Champomier-Vergès M, Collado MDC, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilán CG, Margolles A, Zagorec M (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl Environ Microbiol 73(20):6450–6459CrossRefPubMedGoogle Scholar
  15. Thomas TD, Ellwood DC, Longyear VM (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138(1):109–117PubMedGoogle Scholar
  16. van der Sluis C, Westerink BH, Dijkstal MM, Castelein SJ, van Boxtel AJ, Giuseppin ML, Tramper J, Wijffels RH (2001) Estimation of steady-state culture characteristics during acceleration-stats with yeasts. Biotechnol Bioeng 75(3):267–275CrossRefPubMedGoogle Scholar
  17. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661CrossRefPubMedGoogle Scholar
  18. Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA (2004) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234(2):357–370CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Petri-Jaan Lahtvee
    • 1
    • 2
  • Kaspar Valgepea
    • 1
    • 2
  • Ranno Nahku
    • 1
    • 2
  • Kristo Abner
    • 1
    • 2
  • Kaarel Adamberg
    • 2
    • 3
  • Raivo Vilu
    • 1
    • 2
  1. 1.Department of ChemistryTallinn University of TechnologyTallinnEstonia
  2. 2.Competence Centre of Food and Fermentation TechnologyTallinnEstonia
  3. 3.Department of Food ProcessingTallinn University of TechnologyTallinnEstonia

Personalised recommendations