Advertisement

Antonie van Leeuwenhoek

, 96:227 | Cite as

The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station

  • Natalie LeysEmail author
  • Sarah Baatout
  • Caroline Rosier
  • Annik Dams
  • Catherine s’Heeren
  • Ruddy Wattiez
  • Max Mergeay
Original Paper

Abstract

The survival and behavior of Cupriavidus metallidurans strain CH34 were tested in space. In three spaceflight experiments, during three separate visits to the ‘International Space Station’ (ISS), strain CH34 was grown for 10–12 days at ambient temperature on mineral agar medium. Space- and earth-grown cells were compared post-flight by flow cytometry and using 2D-gel protein analysis. Pre-, in- and post-flight incubation conditions and experiment design had a significant impact on the survival and growth of CH34 in space. In the CH34 cells returning from spaceflight, 16 proteins were identified which were present in higher concentration in cells developed in spaceflight conditions. These proteins were involved in a specific response of CH34 to carbon limitation and oxidative stress, and included an acetone carboxylase subunit, fructose biphosphate aldolase, a DNA protection during starvation protein, chaperone protein, universal stress protein, and alkyl hydroperoxide reductase. The reproducible observation of the over-expression of these same proteins in multiple flight experiments, indicated that the CH34 cells could experience a substrate limitation and oxidative stress in spaceflight where cells and substrates are exposed to lower levels of gravity and higher doses of ionizing radiation. Bacterium C. metallidurans CH34 was able to grow normally under spaceflight conditions with very minor to no effects on cell physiology, but nevertheless specifically altered the expression of a few proteins in response to the environmental changes.

Keywords

Cupriavidus metallidurans CH34 Spaceflight experiments Flow cytometry Proteome analysis 

Notes

Acknowledgments

This work was supported by the European Space Agency ESA/ESTEC through the PRODEX program in collaboration with the Belgian Science Policy through the MESSAGE-1, MESSAGE-2 and BASE projects agreements. The authors are grateful to C. Paillé and C. Lasseur from ESA/ESTEC for support as well as to the astronauts F. De Winne, P. Duque and T. Reiter for care during the flight experiments. R. Wattiez is a Research Associate to FRS-FNRS. Special thanks to the members of our group at SCK•CEN for the help provided during the overnight analysis of space cultures immediately upon their return.

References

  1. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Médigue C, Masson-Boivin C (2008) Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483PubMedCrossRefGoogle Scholar
  2. Baatout S, De Boever P, Mergeay M (2006) Physiological changes induced in four bacterial strains following oxidative stress. Prikl Biokhim Mikrobio 42:418–427Google Scholar
  3. Baatout S, Leys N, Hendrickx L, Dams A, Mergeay M (2007) Physiological changes induced in bacteria following pH stress as a model for space research. Acta Astronautica 60:451–459CrossRefGoogle Scholar
  4. Baker P, Leff L (2004) The effect of simulated microgravity on bacteria from the Mir Space Station. Microgravity Sci Technol 15:35–41PubMedCrossRefGoogle Scholar
  5. Baker P, Leff L (2006) Mir space station bacteria responses to modeled reduced gravity under starvation conditions. Adv Space Res 38:1152–1158CrossRefGoogle Scholar
  6. Benoit MR, Brown RB, Nelson ES, Todd P, Klaus DM (2008) Buoyant plumes from solute gradients generated by Escherichia coli. Phys Biol 5. doi: 10.1088/1478-3975/5/4/046007
  7. Bersch B, Favier A, Schanda P, van Aelst S, Vallaeys T, Covès J, Mergeay M, Wattiez R (2008) Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge. J Mol Biol 380:386–403PubMedCrossRefGoogle Scholar
  8. Boeckmann B, Bairoch A, Apweiler R, Blatter M, Estreicher A, Gasteiger E, Martin M, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370PubMedCrossRefGoogle Scholar
  9. Boyd J, Ellsworth H, Ensign S (2004) Bacterial acetone carboxylase is a manganese-dependent metalloenzyme. J Biol Chem 279:46644–46651PubMedCrossRefGoogle Scholar
  10. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8PubMedGoogle Scholar
  11. Castro V, Thrasher A, Healy M, Ott C, Pierson D (2004) Microbial characterization during the early habitation of the international space station. Microb Ecol 47:119–126PubMedCrossRefGoogle Scholar
  12. Castro V, Bruce R, Ott M, Pierson D (2006) The influence of microbiology on spacecraft design and controls: a historical perspective of the shuttle and international space station programs. SAE International 2006-01-2156Google Scholar
  13. Collard J-M, Provoost A, Taghavi S, Mergeay M (1993) A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt–nickel resistance system. J Bacteriol 175:779–784PubMedGoogle Scholar
  14. Crabbé A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P (2008) Use of the rotating wall vessel technology to study the effect of shear stress on growth behavior of Pseudomonas aeruginosa PA01. Environ Microbiol 10:2098–2110PubMedCrossRefGoogle Scholar
  15. De Boever P, Ilyin V, Forget-Hanus D, Van der Auwera G, Mahillon J, Mergeay M (2007) Conjugation-mediated plasmid exchange between bacteria grown under spaceflight conditions. Microgravity Sci Technol XIX:138–144CrossRefGoogle Scholar
  16. Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491PubMedGoogle Scholar
  17. Goossens O, Vanhavere F, Leys N, De Boever P, O’Sullivan D, Zhou D, Spurny F, Yukihara EG, Gaza R, McKeever SW (2006) Radiation dosimetry for microbial experiments in the international space station using different etched track and luminescent detectors. Radiat Prot Dosim 120:433–437CrossRefGoogle Scholar
  18. Goris J, de Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P et al (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782PubMedGoogle Scholar
  19. Hendrickx L, Mergeay M (2007) From the deep sea to the stars: human life support through minimal communities. Curr Opin Microbiol 10:231–237PubMedCrossRefGoogle Scholar
  20. Horneck G, Rettberg P, Baumstark-Khan C, Rink H, Kozubek S, Schäfer M, Schmitz C (1996) DNA repair in microgravity: studies on bacteria and mammalian cells in the experiments REPAIR and KINETICS. J Biotechnol 47:99–112PubMedCrossRefGoogle Scholar
  21. Karlin S, Mrázek J (2000) Predicted highly expressed genes of diverse prokaryotic genomes. J Bacteriol 182:5238–5250PubMedCrossRefGoogle Scholar
  22. Klaus D, Howard H (2006) Antibiotic efficacy and microbial virulence during spaceflight. Trends Biotechnol 24:131–136PubMedCrossRefGoogle Scholar
  23. La Duc M, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985PubMedCrossRefGoogle Scholar
  24. La Duc M, Kern R, Venkateswaran K (2004) Microbial monitoring of spacecraft and associated environments. Microb Ecol 47:150–158PubMedCrossRefGoogle Scholar
  25. Leys N, Hendrickx L, De Boever P, Baatout S, Mergeay M (2004) Spaceflight effects on bacterial physiology. J Biol Regul Homeost Agents 18:193–199PubMedGoogle Scholar
  26. Liu X, Kim K, Leighton T, Theil E (2006) Paired Bacillus anthracis Dps (Mini-ferritin) have different reactivities with peroxide. J Biol Chem 281:27827–27835PubMedCrossRefGoogle Scholar
  27. Mastroleo F, Van Houdt R, Leroy B, Benotmane R, Janssen A, Mergeay M, Hendrickx L, Wattiez R, Leys N (2009) Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to spaceflight. ISME J (in press)Google Scholar
  28. Mergeay M (2000) Bacteria adapted to industrial biotopes: the metal resistant Ralstonia. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington D.C., pp 403–414Google Scholar
  29. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  30. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410PubMedCrossRefGoogle Scholar
  31. Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus genus and metal resistance. In: Schwartz E (ed) Megaplasmids. Springer-Verlag, Berlin, pp 209–238CrossRefGoogle Scholar
  32. Moissl C, Osman S, La Duc M, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521PubMedCrossRefGoogle Scholar
  33. Monchy S, Benotmane M, Janssen P, Vallaeys T, Taghavi S, van der Lelie N, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425PubMedCrossRefGoogle Scholar
  34. Mortz E, Krogh T, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363PubMedCrossRefGoogle Scholar
  35. Mouz S, Coursange E, Toussaint A (2001) Ralstonia metallidurans CH34 RpoN sigma factor and the control of nitrogen metabolism and biphenyl utilization. Microbiology 147:1947–1954PubMedGoogle Scholar
  36. Novikova N (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47:127–132PubMedCrossRefGoogle Scholar
  37. Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12PubMedCrossRefGoogle Scholar
  38. Ott M, Bruce R, Pierson D (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47:133–136PubMedCrossRefGoogle Scholar
  39. Roman M, Weir N, Wilson M, Pyle B (2006) Microbial characterization of Internal Active Thermal Control System (IATCS) hardware surfaces after five years of operation in the international space station. SAE International 2006-01-2157Google Scholar
  40. Saint-Ruf C, Taddei F, Matic I (2004) Stress and survival of aging Escherichia coli rpoS colonies. Genetics 168:541–546PubMedCrossRefGoogle Scholar
  41. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thébault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502PubMedCrossRefGoogle Scholar
  42. Sánchez MA, González B (2007) Genetic characterization of 2, 4, 6-trichlorophenol degradation in Cupriavidus necator JMP134. Appl Environ Microbiol 73:2769–2776PubMedCrossRefGoogle Scholar
  43. Satoshi N, Toshiaki F, Jun M (2008) Targeted engineering of Cupriavidus necator chromosome for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Can J Chem 86:621–627CrossRefGoogle Scholar
  44. Siegele D (2005) Universal stress proteins in Escherichia coli. J Bacteriol 187:6253–6254PubMedCrossRefGoogle Scholar
  45. Sluis M, Larsen R, Krum J, Anderson R, Metcalf W, Ensign S (2002) Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol 184:2969–2977PubMedCrossRefGoogle Scholar
  46. Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409PubMedCrossRefGoogle Scholar
  47. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Médigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65PubMedCrossRefGoogle Scholar
  48. Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57:640–648PubMedCrossRefGoogle Scholar
  49. Vanhavere F, Genicot JL, O’Sullivan D, Zhou D, Spurny F, Jadrnickova I, Sawakuchi GO, Yukihara EG (2008) DOsimetry of BIological EXperiments in SPace (DOBIES) with luminescence (OSL and TL) and track etch detectors. Rad Meas 43:694–697CrossRefGoogle Scholar
  50. von Rozycki T, Nies DH (2008) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek. doi: 10.1007/s10482-008-9284-5 Google Scholar
  51. Vukanti R, Mintz E, Leff L (2008) Changes in gene expression of E. coli under conditions of modeled reduced gravity. Microgravity Sci Technol 20:41–57CrossRefGoogle Scholar
  52. Wilson J, Ott M, Ramamurthy R, Porwollik S, McClelland M, Pierson D, Nickerson C (2002) Low-shear modeled microgravity alters the Salmonella enterica Serovar Typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 68:5408–5416PubMedCrossRefGoogle Scholar
  53. Wilson J, Ott M, Höner zu Bentrup K, Ramamurthy R et al (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Nat Acad Sci USA 104:16299–16304PubMedCrossRefGoogle Scholar
  54. Wilson JW, Ott CM, Quick L, Davis R, zu Bentrup KH, Crabbé A et al (2008) Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS ONE 3(12):e3923PubMedCrossRefGoogle Scholar
  55. Zhang Y, Griffiths MW (2003) Induced expression of the heat shock protein genes uspA and grpE during starvation at low temperatures and their influence on thermal resistance of Escherichia coli O157:H7. J Food Prot 66:2045–2050PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Natalie Leys
    • 1
    Email author
  • Sarah Baatout
    • 1
  • Caroline Rosier
    • 2
  • Annik Dams
    • 1
  • Catherine s’Heeren
    • 2
  • Ruddy Wattiez
    • 2
  • Max Mergeay
    • 1
  1. 1.Expert Group Molecular and Cellular BiologyBelgian Nuclear Research Centre (SCK•CEN)MolBelgium
  2. 2.Department of Proteomics and Protein BiochemistryUniversity of MonsMonsBelgium

Personalised recommendations