Antonie van Leeuwenhoek

, Volume 96, Issue 2, pp 205–226 | Cite as

New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria

  • Rob Van Houdt
  • Sébastien Monchy
  • Natalie Leys
  • Max Mergeay
Original Paper


Cupriavidus metallidurans strain CH34 is a β-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related β-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance.


Genomic islands Tn4371 Tyrosine-based site-specific recombinase Integrase Heavy metals Chemolithotrophy Transposon Annotation Synteny 



This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the MISSEX project (PRODEX agreements C90254) and by the collaboration agreement between SCK•CEN and Université Libre of Bruxelles. SM was supported by a SCK•CEN Ph.D. grant. Thanks are due to Claudine Médigue, Zoé Rouy, David Vallenet from the MAGE Genoscope platform of annotation for their availability and their kind pedagogy, to the SCK•CEN annotation team and especially Paul Janssen, Pieter Monsieurs, Hugo Moors and Nicolas Morin, to Niels van der Lelie and Safieh Taghavi for 20 years collaboration about the genetics of C. metallidurans CH34, to Ariane Toussaint and Jacques Mahillon for comments and suggestions about the mobile genetic elements and the introduction to the ACLAME and ISfinder databases, and to Simon Silver for patience and comprehension.


  1. Amadou C, Pascal G, Mangenot S et al (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483. doi: 10.1101/gr.076448.108 PubMedCrossRefGoogle Scholar
  2. Anton A, Grosse C, Reissmann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881PubMedGoogle Scholar
  3. Audic S, Robert C, Campagna B, Parinello H, Claverie JM, Raoult D, Drancourt M (2007) Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet 3:e138. doi: 10.1371/journal.pgen.0030138 PubMedCrossRefGoogle Scholar
  4. Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658. doi: 10.1128/JB.183.19.5651-5658.2001 PubMedCrossRefGoogle Scholar
  5. Brim H, Heyndrickx M, de Vos P, Wilmotte A, Springael D, Schlegel H, Mergeay M (1999) Amplified rDNA restriction analysis and further genotypic characterisation of metal-resistant soil bacteria and related facultative hydrogenotrophs. Syst Appl Microbiol 22:258–268PubMedGoogle Scholar
  6. Chain PS, Denef VJ, Konstantinidis KT et al (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287. doi: 10.1073/pnas.0606924103 PubMedCrossRefGoogle Scholar
  7. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44:2715–2719. doi: 10.1002/anie.200462443 PubMedCrossRefGoogle Scholar
  8. Chen PR, Wasinger EC, Zhao J, van der Lelie D, Chen LX, He C (2007) Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc 129:12350–12351. doi: 10.1021/ja0733890 PubMedCrossRefGoogle Scholar
  9. Collard JM, Provoost A, Taghavi S, Mergeay M (1993) A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt-nickel resistance system. J Bacteriol 175:779–784PubMedGoogle Scholar
  10. Denger K, Weinitschke S, Smits TH, Schleheck D, Cook AM (2008) Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1. Microbiology 154:256–263. doi: 10.1099/mic.0.2007/011650-0 PubMedCrossRefGoogle Scholar
  11. Di Gioia D, Peel M, Fava F, Wyndham RC (1998) Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol 64:1940–1946PubMedGoogle Scholar
  12. Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491PubMedGoogle Scholar
  13. Dong Q, Sadouk A, van der Lelie D, Taghavi S, Ferhat A, Nuyten JM, Borremans B, Mergeay M, Toussaint A (1992) Cloning and sequencing of IS1086, an Alcaligenes eutrophus insertion element related to IS30 and IS4351. J Bacteriol 174:8133–8138PubMedGoogle Scholar
  14. Fricke WF, Kusian B, Bowien B (2009) The genome organization of Ralstonia eutropha strain H16 and related species of the Burkholderiaceae. J Mol Microbiol Biotechnol 16:124–135. doi: 10.1159/000142899 PubMedCrossRefGoogle Scholar
  15. Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis. Int J Syst Evol Microbiol 51:1773–1782PubMedGoogle Scholar
  16. Gross R, Guzman CA, Sebaihia M et al (2008) The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 9:449. doi: 10.1186/1471-2164-9-449 PubMedCrossRefGoogle Scholar
  17. Hacker J, Hochhut B, Middendorf B, Schneider G, Buchrieser C, Gottschalk G, Dobrindt U (2004) Pathogenomics of mobile genetic elements of toxigenic bacteria. Int J Med Microbiol 293:453–461. doi: 10.1078/1438-4221-00290 PubMedCrossRefGoogle Scholar
  18. Haines AS, Jones K, Batt SM, Kosheleva IA, Thomas CM (2007) Sequence of plasmid pBS228 and reconstruction of the IncP-1α phylogeny. Plasmid 58:76–83. doi: 10.1016/j.plasmid.2007.01.001 PubMedCrossRefGoogle Scholar
  19. Hou S, Saw JH, Lee KS et al (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101:18036–18041. doi: 10.1073/pnas.0407638102 PubMedCrossRefGoogle Scholar
  20. Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420. doi: 10.1093/bioinformatics/btg004 PubMedCrossRefGoogle Scholar
  21. Klockgether J, Wurdemann D, Reva O, Wiehlmann L, Tummler B (2006) Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 189:2443–2459. doi: 10.1128/JB.01688-06 PubMedCrossRefGoogle Scholar
  22. Klockgether J, Wurdemann D, Wiehlmann L, Tummler B (2008) Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102. Microbiology 154:1599–1604. doi: 10.1099/mic.0.2007/014340-0 PubMedCrossRefGoogle Scholar
  23. Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, Wiehlmann L, Fritz HJ, Tummler B (2002) Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol 184:6665–6680. doi: 10.1128/JB.184.23.6665-6680.2002 PubMedCrossRefGoogle Scholar
  24. Leplae R, Hebrant A, Wodak SJ, Toussaint A (2004) ACLAME: a classification of mobile genetic elements. Nucleic Acids Res 32:D45–D49. doi: 10.1093/nar/gkh084 PubMedCrossRefGoogle Scholar
  25. Leplae R, Lima-Mendez G, Toussaint A (2006) A first global analysis of plasmid encoded proteins in the ACLAME database. FEMS Microbiol Rev 30:980–994. doi: 10.1111/j.1574-6976.2006.00044.x PubMedCrossRefGoogle Scholar
  26. Li W, Shi J, Wang X, Han Y, Tong W, Ma L, Liu B, Cai B (2004) Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene 336:231–240. doi: 10.1016/j.gene.2004.03.027 PubMedCrossRefGoogle Scholar
  27. Mathee K, Narasimhan G, Valdes C et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105. doi: 10.1073/pnas.0711982105 PubMedCrossRefGoogle Scholar
  28. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620. doi: 10.1038/nrmicro1462 PubMedCrossRefGoogle Scholar
  29. Mela F, Fritsche K, Boersma H, van Elsas JD, Bartels D, Meyer F, de Boer W, van Veen JA, Leveau JH (2008) Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiol Ecol 66:45–62. doi: 10.1111/j.1574-6941.2008.00472.x PubMedCrossRefGoogle Scholar
  30. Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24. doi: 10.1016/0167-7799(91)90007-5 PubMedCrossRefGoogle Scholar
  31. Mergeay M (2000) Bacteria adapted to industrial biotopes: the metal resistant Ralstonia. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, pp 403–414Google Scholar
  32. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochim 86:440–442PubMedGoogle Scholar
  33. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  34. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410. doi: 10.1016/S0168-6445(03)00045-7 PubMedCrossRefGoogle Scholar
  35. Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus genus and metal resistance. In: Schwartz E (ed) Microbial megaplasmids. Springer, Berlin, pp 209–238CrossRefGoogle Scholar
  36. Merlin C, Springael D, Mergeay M, Toussaint A (1997) Organisation of the bph gene cluster of transposon Tn4371, encoding enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds. Mol Gen Genet 253:499–506. doi: 10.1007/s004380050349 PubMedCrossRefGoogle Scholar
  37. Merlin C, Springael D, Toussaint A (1999) Tn4371: a modular structure encoding a phage-like integrase, a Pseudomonas-like catabolic pathway, and RP4/Ti-like transfer functions. Plasmid 41:40–54. doi: 10.1006/plas.1998.1375 PubMedCrossRefGoogle Scholar
  38. Monchy S, Vallaeys T, Bossus A, Mergeay M (2006) Metal efflux P1-ATPase genes of Cupriavidus metallidurans CH34: a transcriptomic approach. Int J Environ Anal Chem 86:677–692. doi: 10.1080/03067310600583824 CrossRefGoogle Scholar
  39. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425. doi: 10.1128/JB.00375-07 PubMedCrossRefGoogle Scholar
  40. Muller D, Simeonova DD, Riegel P, Mangenot S, Koechler S, Lievremont D, Bertin PN, Lett MC (2006) Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56:1765–1769. doi: 10.1099/ijs.0.64308-0 PubMedCrossRefGoogle Scholar
  41. Muller D, Medigue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53. doi: 10.1371/journal.pgen.0030053 PubMedCrossRefGoogle Scholar
  42. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043. doi: 10.1128/JB.186.23.8036-8043.2004 PubMedCrossRefGoogle Scholar
  43. Nakatsu C, Ng J, Singh R, Straus N, Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci USA 88:8312–8316. doi: 10.1073/pnas.88.19.8312 PubMedCrossRefGoogle Scholar
  44. Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868PubMedGoogle Scholar
  45. Nies A, Nies DH, Silver S (1989) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070PubMedGoogle Scholar
  46. Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11:82–93. doi: 10.1159/000092820 PubMedCrossRefGoogle Scholar
  47. O’Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam E (2007) Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environ Microbiol 9:1017–1034. doi: 10.1111/j.1462-2920.2006.01228.x PubMedCrossRefGoogle Scholar
  48. Peel MC, Wyndham RC (1999) Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill. Appl Environ Microbiol 65:1627–1635PubMedGoogle Scholar
  49. Pohlmann A, Fricke WF, Reinecke F et al (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262. doi: 10.1038/nbt1244 PubMedCrossRefGoogle Scholar
  50. Providenti MA, Shaye RE, Lynes KD, McKenna NT, O’Brien JM, Rosolen S, Wyndham RC, Lambert IB (2006) The locus coding for the 3-nitrobenzoate dioxygenase of Comamonas sp. strain JS46 is flanked by IS1071 elements and is subject to deletion and inversion events. Appl Environ Microbiol 72:2651–2660. doi: 10.1128/AEM.72.4.2651-2660.2006 PubMedCrossRefGoogle Scholar
  51. Roberts AP, Chandler M, Courvalin P et al (2008) Revised nomenclature for transposable genetic elements. Plasmid 60:167–173. doi: 10.1016/j.plasmid.2008.08.001 PubMedCrossRefGoogle Scholar
  52. Rosch V, Denger K, Schleheck D, Smits TH, Cook AM (2008) Different bacterial strategies to degrade taurocholate. Arch Microbiol 190:11–18. doi: 10.1007/s00203-008-0357-7 PubMedCrossRefGoogle Scholar
  53. Salanoubat M, Genin S, Artiguenave F et al (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502. doi: 10.1038/415497a PubMedCrossRefGoogle Scholar
  54. Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD, Concepcion RN, Ohta H (2006) Cupriavidus pinatubonensis sp. nov. and Cupriavidus laharis sp. nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. Int J Syst Evol Microbiol 56:973–978. doi: 10.1099/ijs.0.63922-0 PubMedCrossRefGoogle Scholar
  55. Schleheck D, Knepper TP, Fischer K, Cook AM (2004a) Mineralization of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 70:4053–4063. doi: 10.1128/AEM.70.7.4053-4063.2004 PubMedCrossRefGoogle Scholar
  56. Schleheck D, Tindall BJ, Rossello-Mora R, Cook AM (2004b) Parvibaculum lavamentivorans gen. nov., sp. nov., a novel heterotroph that initiates catabolism of linear alkylbenzenesulfonate. Int J Syst Evol Microbiol 54:1489–1497. doi: 10.1099/ijs.0.03020-0 PubMedCrossRefGoogle Scholar
  57. Schleheck D, Knepper TP, Eichhorn P, Cook AM (2007) Parvibaculum lavamentivorans DS-1T degrades centrally substituted congeners of commercial linear alkylbenzenesulfonate to sulfophenyl carboxylates and sulfophenyl dicarboxylates. Appl Environ Microbiol 73:4725–4732. doi: 10.1128/AEM.00632-07 PubMedCrossRefGoogle Scholar
  58. Schneiker S, Keller M, Droge M, Lanka E, Puhler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181. doi: 10.1093/nar/29.24.5169 PubMedCrossRefGoogle Scholar
  59. Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383. doi: 10.1016/S0022-2836(03)00894-5 PubMedCrossRefGoogle Scholar
  60. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi: 10.1093/nar/gkj014 PubMedCrossRefGoogle Scholar
  61. Stokes HW, Elbourne LD, Hall RM (2007) Tn1403, a multiple-antibiotic resistance transposon made up of three distinct transposons. Antimicrob Agents Chemother 51:1827–1829. doi: 10.1128/AAC.01279-06 PubMedCrossRefGoogle Scholar
  62. Taghavi S (1996) Un mégaplasmide de résistance aux métaux lourds d’Alcaligenes eutrophus: analyse génétique and fonctionnelle. Ph.D. Thesis, Université Libre de Bruxelles, Brussels, BelgiumGoogle Scholar
  63. Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. Plasmid 37:22–34. doi: 10.1006/plas.1996.1274 PubMedCrossRefGoogle Scholar
  64. Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409. doi: 10.1128/JB.182.5.1399-1409.2000 PubMedCrossRefGoogle Scholar
  65. Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D (2003) The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 69:4837–4845. doi: 10.1128/AEM.69.8.4837-4845.2003 PubMedCrossRefGoogle Scholar
  66. Tseng SP, Hsueh PR, Tsai JC, Teng LJ (2007) Tn6001, a transposon-like element containing the bla VIM-3-harboring integron In450. Antimicrob Agents Chemother 51:4187–4190. doi: 10.1128/AAC.00542-07 PubMedCrossRefGoogle Scholar
  67. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65. doi: 10.1093/nar/gkj406 PubMedCrossRefGoogle Scholar
  68. Van der Auwera GA, Król JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie van Leeuwenhoek. doi: 10.1007/s10482-009-9316-9
  69. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289. doi: 10.1099/ijs.0.63247-0 PubMedCrossRefGoogle Scholar
  70. Weightman AJ, Topping AW, Hill KE, Lee LL, Sakai K, Slater JH, Thomas AW (2002) Transposition of DEH, a broad-host-range transposon flanked by ISPpu12, in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. J Bacteriol 184:6581–6591. doi: 10.1128/JB.184.23.6581-6591.2002 PubMedCrossRefGoogle Scholar
  71. Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI (1999) Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576PubMedCrossRefGoogle Scholar
  72. Williams PA, Jones RM, Shaw LE (2002) A third transposable element, ISPpu12, from the toluene-xylene catabolic plasmid pWW0 of Pseudomonas putida mt-2. J Bacteriol 184:6572–6580. doi: 10.1128/JB.184.23.6572-6580.2002 PubMedCrossRefGoogle Scholar
  73. Wyndham RC, Nakatsu C, Peel M, Cashore A, Ng J, Szilagyi F (1994) Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system. Appl Environ Microbiol 60:86–93PubMedGoogle Scholar
  74. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 39:897–904PubMedGoogle Scholar
  75. Zhang YB, Monchy S, Greenberg B, Mergeay M, Gang O, Taghavi S, van der Lelie D (2009) ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34. Antonie van Leeuwenhoek. doi: 10.1007/s10482-009-9313-z Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Rob Van Houdt
    • 1
  • Sébastien Monchy
    • 1
    • 2
  • Natalie Leys
    • 1
  • Max Mergeay
    • 1
  1. 1.Unit for MicrobiologySCK•CENMolBelgium
  2. 2.Biology Department, Brookhaven National LaboratoryUptonUSA

Personalised recommendations