Antonie van Leeuwenhoek

, Volume 96, Issue 1, pp 17–29 | Cite as

Ambrosiellabeaveri, sp. nov., Associated with an exotic ambrosia beetle, Xylosandrus mutilatus (Coleoptera: Curculionidae, Scolytinae), in Mississippi, USA

  • Diana L. SixEmail author
  • W. Doug Stone
  • Z. Wilhelm de Beer
  • Sandra W. Woolfolk
Original Paper


Xylosandrus mutilatus is an Asian ambrosia beetle that has recently established in Mississippi, Texas, Alabama, and possibly Florida, USA. We investigated the fungi associated with the mycangia (specialized fungus-transporting structures) of X. mutilatus in Mississippi. Mycangia consistently yielded an Ambrosiella sp. which was subsequently found to be closely related to, but distinct from, other Ambrosiella species affiliated with Ceratocystis. This Ambrosiella is described herein as Ambrosiellabeaveri sp. nov. Also isolated were Geosmithia lavendula, G. obscura, and a yeast, Candida homelintoma. It is likely Ambrosiella beaveri was introduced along with the beetle into North America.


Ambrosia fungi Candida homelintoma Geosmithia lavendula Geosmithia obscura Scolytinae 



The authors wish to thank David Kimbrough for the use of his land for beetle collections. For technical assistance, we thank Cetin Yuceer, Department of Forestry, and Amanda Lawrence and William Monroe, Electron Microscopy Center, Mississippi State University. A portion of this project was funded by the US Forest Service (Contract SRS 03-CA-11330129-222), the Mississippi Agricultural and Forestry Experiment Station, and the Tree Protection Cooperative Programme (TPCP) and Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, Pretoria, South Africa.


  1. Batra LK (1967) Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia 59:976–1017. doi: 10.2307/3757271 CrossRefGoogle Scholar
  2. Beaver RA (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, San Diego, pp 121–137Google Scholar
  3. Carreiro CS, Pagnocca FC, Buenno OC, Junior MB, Hebling MJA, da Silva OA (1997) Yeasts associated with nests of the leaf-cutting ant Atta sexdens rubropilosa Forel. Antonie Van Leeuwenhoek 71:243–248. doi: 10.1023/A:1000182108648 PubMedCrossRefGoogle Scholar
  4. Cassar S, Blackwell M (1996) Convergent origins of ambrosia fungi. Mycologia 88:596–601. doi: 10.2307/3761153 CrossRefGoogle Scholar
  5. Cognato A, Bogran C, Rabaglia RJ (2006) An exotic ambrosia beetle, Xylosandrus mutilatus (Blandford) (Scolytinae: Xyleborini) found in Texas. The Coleopterists’. Bulletin 60:162–163CrossRefGoogle Scholar
  6. FCAPSP (2003) Exotic bark beetle survey 2003. Florida Coop. Agric. Pest Survey Program Report no. 2003-07-EBBS-01Google Scholar
  7. Fraedrich SW, Harrington TC, Rabaglia RJ (2007) Laurel wilt: a new and devastating disease of redbay caused by a fungal symbiont of the exotic redbay ambrosia beetle. Newsl Mich Entomol Soc 52:14–15Google Scholar
  8. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  9. Haack RA (2006) Exotic bark- and wood-boring Coleoptera in the United States: Recent establishments and interceptions. Can J Res 36:269–288. doi: 10.1139/x05-249 CrossRefGoogle Scholar
  10. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BE (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418. doi: 10.1017/S0953756204009748 PubMedCrossRefGoogle Scholar
  11. Jones KG, Blackwell M (1998) Phylogenetic analysis of ambrosial species in the genus Raffaelea based on 18S rDNA sequences. Mycol Res 102:661–665. doi: 10.1017/S0953756296003437 CrossRefGoogle Scholar
  12. Kajimura H, Hijii N (1992) Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle, Xylosandrus mutilatus (Blandford) (Coleoptera: Scolytidae) in relation to its life history. Ecol Res 7:107–117. doi: 10.1007/BF02348489 CrossRefGoogle Scholar
  13. Kajimura H, Hijii N (1994) Reproduction and resource utilization of the ambrosia beetle, Xylosandrus mutilatus, in field and experimental populations. Entomol Exp Appl 71:121–132. doi: 10.1007/BF02382380 CrossRefGoogle Scholar
  14. Kirschner R (2001) Diversity of filamentous fungi in bark beetle galleries in Central Europe. In: Misra JK, Horn BW (eds) Trichomycetes and other fungal groups. Science Publishers, Enfield, pp 175–196Google Scholar
  15. Kok LT, Norris DM, Chu HM (1970) Sterol metabolism as a basis for a mutualistic symbiosis. Nature 225:661–662. doi: 10.1038/225661b0 PubMedCrossRefGoogle Scholar
  16. Kolařík M, Kubátová A, Pažoutová S, Šrutka P (2004) Morphological and molecular characterization of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycol Res 108:1053–1069. doi: 10.1017/S0953756204000796 Google Scholar
  17. Kolařík M, Kubátová A, Cepicka I, Pažoutová S, Šrutka P (2005) A complex of three new white spored, sympatric, and host-limited Geosmithia species. Mycol Res 109:1323–1336. doi: 10.1017/S0953756205003965 PubMedCrossRefGoogle Scholar
  18. Kolařík M, Kostovčík M, Pažoutová S (2007) Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol Res 111:1298–1310. doi: 10.1016/j.mycres.2007.06.010 PubMedCrossRefGoogle Scholar
  19. Ngoan ND, Wilkinson RC, Short DE, Moses CS, Mangold JR (1976) Biology of an introduced ambrosia beetle, Xylosandrus compactus, in Florida. Ann Entomol Soc Am 69:872–876Google Scholar
  20. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116. doi: 10.1006/mpev.1996.0376 PubMedCrossRefGoogle Scholar
  21. Oliver JB, Mannion CM (2001) Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environ Entomol 30:909–918Google Scholar
  22. Paulin-Mahady A, Harrington TC, McNew D (2002) Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94:62–72. doi: 10.2307/3761846 CrossRefGoogle Scholar
  23. Pitt JI (1979) Geosmithia gen nov. for Penicillium lavendulum and related species. Can J Bot 57:2021–2030. doi: 10.1139/b79-252 CrossRefGoogle Scholar
  24. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  25. Rayner RW (1970) A mycological colour chart. CAB Commonwealth Mycological Institute, Kew, Surrey, and the British Mycological Society, UKGoogle Scholar
  26. Rollins F, Jones KG, Krokene P, Solheim H, Blackwell M (2001) Phylogeny of asexual fungi associated with bark and ambrosia beetles. Mycologia 93:991–996. doi: 10.2307/3761761 CrossRefGoogle Scholar
  27. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  28. Schiefer TL, Bright DE (2004) Xylosandrus mutilatus (Blandford), an exotic ambrosia beetle (Coleoptera: Curculionidae: Scolytinae: Xyleborini) new to North America. Coleopt Bull 58:431–438. doi: 10.1649/760 CrossRefGoogle Scholar
  29. Six DL (2003) Bark beetle-fungus symbioses. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, New York, pp 97–114Google Scholar
  30. Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9CrossRefGoogle Scholar
  31. Stone WD, Nebeker TE (2007) Distribution and seasonal abundance of Xylosandrus mutilatus. J Entomol Sci 42:409–412. doi: 10.1007/978-1-4020-6099-1 Google Scholar
  32. Stone WD, Nebeker TE, Monroe WA (2005) Ultrastructure of the mesonotal mycangium of Xylosandrus mutilatus (Blandford), an exotic ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) by light, scanning, and transmission electron microscopy, In Price R, Kotula P, Marko M, Scott JH, Vander Voort GF, Manilova E, Mah Lee Ng M, Smith K, Griffin B, Smith P, McKernan S (eds) Proceedings Microscopy and Microanalysis, vol. 11(Suppl 2), Cambridge University Press, New York. pp 172–173Google Scholar
  33. Stone WD, Nebeker TE, Gerard PD (2007) Host Plants of Xylosandrus mutilatus (Coleoptera: Curculionidae) in Mississippi. Fla Entomol 90:191–195. doi: 10.1653/0015-4040(2007)90[191:HPOXMI]2.0.CO;2 CrossRefGoogle Scholar
  34. Suh S-O, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265. doi: 10.1017/S0953756205002388 PubMedCrossRefGoogle Scholar
  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  36. Tang W (2000) Biological characteristics of Xyleborus mutilatus and its control. J Zhejiang Coll 17:417–420Google Scholar
  37. Van der Walt JP, Nakase T (1973) Candida homilentoma, a new yeast from South African insect sources. Antonie Van Leeuwenhoek 39:449–453. doi: 10.1007/BF02578887 PubMedCrossRefGoogle Scholar
  38. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedGoogle Scholar
  39. Weber BC (1978) Xylosandrus germanus (Blandf.) (Coleoptera: Scolytidae), a new pest of black walnut: a review of its distribution, host plants, and environmental conditions of attack. In: Proceedings, Walnut insects and diseases workshop, 13–14 June, Carbondale, IL, pp 63–68Google Scholar
  40. Weber BC (1982) The biology of the ambrosia beetle Xylosandrus germanus Blandford (Coleoptera: Scolytidae) and its effects on black walnut. PhD Dissertation. Dept of Zoology, Southern Illinois University, CarbondaleGoogle Scholar
  41. Weber BC, McPherson JE (1984) The ambrosia fungus of Xylosandrus germanus (Coleoptera: Scolytidae). Can Entomol 116:281–283CrossRefGoogle Scholar
  42. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: CR P, Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) Protocols: a guide to methods, applications. Academic Press, San Diego, pp 315–322Google Scholar
  43. Wood SL (1977) Introduced and exported American Scolytidae (Coleoptera). Great Basin Nat Mem 37:67–74Google Scholar
  44. Woolfolk SW, Inglis GD (2004) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol Control 29:155–168. doi: 10.1016/S1049-9644(03)00139-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Diana L. Six
    • 1
    Email author
  • W. Doug Stone
    • 2
  • Z. Wilhelm de Beer
    • 3
  • Sandra W. Woolfolk
    • 2
  1. 1.Department of Ecosystem and Conservation Sciences, College of Forestry and ConservationUniversity of MontanaMissoulaUSA
  2. 2.Department of Entomology and Plant PathologyMississippi State UniversityMississippiUSA
  3. 3.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations