Antonie van Leeuwenhoek

, Volume 96, Issue 2, pp 193–204 | Cite as

Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids

  • Géraldine A. Van der Auwera
  • Jaroslaw E. Król
  • Haruo Suzuki
  • Brian Foster
  • Rob Van Houdt
  • Celeste J. Brown
  • Max Mergeay
  • Eva M. Top
Original Paper


The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name “PromA”.


Plasmid Horizontal gene transfer Broad host range Transposon 



Broad host range


Coding sequence


Horizontal gene transfer


Type IV secretion system



This work was supported by the Microbial Genome Sequencing Program of the National Science Foundation (NSF grant EF-0627988), as well as by a former European Community program BIOTECH (grant BI02-CT92-0491). We are grateful to the DOE Joint Genome Institute (JGI) for providing the DNA sequence of pMOL98 (agreement UA_Top_173_060602). We thank Stacey Poler and Linda Rogers for providing JGI with pMOL98 plasmid DNA and confirming restriction site profiles.

Supplementary material

10482_2009_9316_MOESM1_ESM.doc (120 kb)
(DOC 121 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  2. Ason B, Reznikoff WS (2004) A high-throughput assay for Tn5 Tnp-induced DNA cleavage. Nucleic Acids Res 32:e83. doi: 10.1093/nar/gnh080 PubMedCrossRefGoogle Scholar
  3. Burland V, Shao Y, Perna NT, Plunkett G, Sofia HJ, Blattner FR (1998) The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26:4196–4204. doi: 10.1093/nar/26.18.4196 PubMedCrossRefGoogle Scholar
  4. Campbell A, Mrazek J, Karlin S (1999) Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA 96:9184–9189. doi: 10.1073/pnas.96.16.9184 PubMedCrossRefGoogle Scholar
  5. Chakraborty R, O’Connor SM, Chan E, Coates JD (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol 71:8649–8655. doi: 10.1128/AEM.71.12.8649-8655.2005 PubMedCrossRefGoogle Scholar
  6. Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22:51–61. doi: 10.1080/09687860500063316 PubMedCrossRefGoogle Scholar
  7. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043. doi: 10.1038/35082545 PubMedCrossRefGoogle Scholar
  8. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. doi: 10.1101/gr.2289704 PubMedCrossRefGoogle Scholar
  9. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promotor probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572PubMedGoogle Scholar
  10. Drønen AK, Torsvik V, Goksøyr J, Top EM (1998) Effect of mercury addition on plasmid incidence and gene mobilising capacity in bulk soil. FEMS Microbiol Ecol 27:381–394. doi: 10.1016/S0168-6496(98)00085-3 Google Scholar
  11. Espinosa M, Cohen SN, Couturier M, del Solar G, Diaz-Orejas R, Giraldo R (2000) Plasmid replication and copy number control. In: Thomas CM et al (eds) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, Amsterdam, pp 1–47Google Scholar
  12. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732. doi: 10.1038/nrmicro1235 PubMedCrossRefGoogle Scholar
  13. Gstalder ME, Faelen M, Mine N, Top EM, Mergeay M, Couturier M (2003) Replication functions of new broad host range plasmids isolated from polluted soils. Res Microbiol 154:499–509. doi: 10.1016/S0923-2508(03)00143-8 PubMedCrossRefGoogle Scholar
  14. Heuer H, Kopmann C, Binh TT, Top EM, Smalla K (2009) Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low % G + C content. Environ Microbiol. doi:  10.1111/j.1462-2920.2008.01819.x. (Published online)
  15. Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas. Part XII. Studies on the microorganisms of cereal grain. Agric Biol Chem 35:1566–1571Google Scholar
  16. Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97. doi: 10.1099/ijs.0.02636-0 PubMedCrossRefGoogle Scholar
  17. Kholodii GY, Gorlenko Z, Lomovskaya OL, Mindlin SZ, Yurieva OV, Nikiforov VG (1993) Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid 30:303–308. doi: 10.1006/plas.1993.1064 PubMedCrossRefGoogle Scholar
  18. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719. doi: 10.1093/nar/gkn668 PubMedCrossRefGoogle Scholar
  19. Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397. doi: 10.1007/PL00006158 PubMedCrossRefGoogle Scholar
  20. Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA et al (2005) Target-site preferences of sleeping beauty transposons. J Mol Biol 346:161–173. doi: 10.1016/j.jmb.2004.09.086 PubMedCrossRefGoogle Scholar
  21. Manna D, Breier AM, Higgins NP (2004) Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci USA 101:9780–9785. doi: 10.1073/pnas.0400745101 PubMedCrossRefGoogle Scholar
  22. Marques MV, da Silva AM, Gomes SL (2001) Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa. Plasmid 45:184–199. doi: 10.1006/plas.2000.1514 PubMedCrossRefGoogle Scholar
  23. Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416. doi: 10.1128/AEM.00197-08 PubMedCrossRefGoogle Scholar
  24. Mazodier P, Davies J (1991) Gene transfer between distantly related bacteria. Annu Rev Genet 25:147–171. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  25. Mela F, Fritsche K, Boersma H, van Elsas JD, Bartels D, Meyer F et al (2008) Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiol Ecol 66:45–62. doi: 10.1111/j.1574-6941.2008.00472.x PubMedCrossRefGoogle Scholar
  26. Minakhina S, Kholodii G, Mindlin S, Yurieva O, Nikiforov V (1999) Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol 33:1059–1068. doi: 10.1046/j.1365-2958.1999.01548.x PubMedCrossRefGoogle Scholar
  27. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. doi: 10.1038/35012500 PubMedCrossRefGoogle Scholar
  28. Pride DT, Wassenaar TM, Ghose C, Blaser MJ (2006) Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics 7:8. doi: 10.1186/1471-2164-7-8 PubMedCrossRefGoogle Scholar
  29. Radstrom P, Backman A, Qian N, Kragsbjerg P, Pahlson C, Olcen P (1994) Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy. J Clin Microbiol 32:2738–2744PubMedGoogle Scholar
  30. Reznikoff WS (2003) Tn5 as a model for understanding DNA transposition. Mol Microbiol 47:1199–1206. doi: 10.1046/j.1365-2958.2003.03382.x PubMedCrossRefGoogle Scholar
  31. Rhodes G, Parkhill J, Bird C, Ambrose K, Jones MC, Huys G et al (2004) Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol 70:7497–7510. doi: 10.1128/AEM.70.12.7497-7510.2004 PubMedCrossRefGoogle Scholar
  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  33. Schluter A, Szczepanowski R, Puhler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–477. doi: 10.1111/j.1574-6976.2007.00074.x PubMedCrossRefGoogle Scholar
  34. Schneiker S, Keller M, Droge M, Lanka E, Puhler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181. doi: 10.1093/nar/29.24.5169 PubMedCrossRefGoogle Scholar
  35. Sota M, Tsuda M, Yano H, Suzuki H, Forney LJ, Top EM (2007) Region-specific insertion of transposons in combination with selection for high plasmid transferability and stability accounts for the structural similarity of IncP-1 plasmids. J Bacteriol 189:3091–3098. doi: 10.1128/JB.01906-06 PubMedCrossRefGoogle Scholar
  36. Suzuki H, Sota M, Brown CJ, Top EM (2008) Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res 36:e147. doi: 10.1093/nar/gkn753 PubMedCrossRefGoogle Scholar
  37. Szpirer C, Top EM, Couturier M, Mergeay M (1999) Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145:3321–3329PubMedGoogle Scholar
  38. Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250. doi: 10.1111/j.1574-6968.1999.tb13575.x PubMedCrossRefGoogle Scholar
  39. Tauch A, Schneiker S, Selbitschka W, Puhler A, van Overbeek LS, Smalla K et al (2002) The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653PubMedGoogle Scholar
  40. Tett A, Spiers AJ, Crossman LC, Ager D, Ciric L, Dow JM et al (2007) Sequence-based analysis of pQBR103; a representative of a unique, transfer-proficient mega plasmid resident in the microbial community of sugar beet. ISME J 1:331–340PubMedGoogle Scholar
  41. Thomas CM (ed) (2000a) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, AmsterdamGoogle Scholar
  42. Thomas CM (2000b) Paradigms of plasmid organization. Mol Microbiol 37:485–491. doi: 10.1046/j.1365-2958.2000.02006.x PubMedCrossRefGoogle Scholar
  43. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  44. Tobes R, Pareja E (2006) Bacterial repetitive extragenic palindromic sequences are DNA targets for insertion sequence elements. BMC Genomics 7:62. doi: 10.1186/1471-2164-7-62 PubMedCrossRefGoogle Scholar
  45. Top EM, De Smet I, Verstraete W, Dijkmans R, Mergeay M (1994) Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839PubMedGoogle Scholar
  46. Top EM, Moënne-Loccoz Y, Pembroke T, Thomas CM (2000) Phenotypic traits conferred by plasmids. In: Thomas CM (ed) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, Amsterdam, pp 249–285Google Scholar
  47. van Elsas JD, Gardener BB, Wolters AC, Smit E (1998) Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64:880–889PubMedGoogle Scholar
  48. Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in the genome of C. metallidurans CH34, their possible roles and their occurrence in other bacteria. Antonie van Leeuwenhoek (in press, this issue)Google Scholar
  49. van Passel MW, Bart A, Luyf AC, van Kampen AH, van der Ende A (2006) Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics 7:26. doi: 10.1186/1471-2164-7-26 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Géraldine A. Van der Auwera
    • 1
    • 2
  • Jaroslaw E. Król
    • 2
  • Haruo Suzuki
    • 2
  • Brian Foster
    • 3
  • Rob Van Houdt
    • 4
  • Celeste J. Brown
    • 2
  • Max Mergeay
    • 4
  • Eva M. Top
    • 2
  1. 1.Department of Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA
  2. 2.Department of Biological SciencesUniversity of IdahoMoscowUSA
  3. 3.DOE Joint Genome InstituteWalnut CreekUSA
  4. 4.Molecular & Cellular Biology, Belgian Center for Nuclear EnergySCK.CENMOLBelgium

Personalised recommendations