Advertisement

Antonie van Leeuwenhoek

, Volume 96, Issue 2, pp 161–170 | Cite as

ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34

  • Yian-Biao Zhang
  • Sébastien Monchy
  • Bill Greenberg
  • Max Mergeay
  • Oleg Gang
  • Safiyh Taghavi
  • Daniel van der LelieEmail author
Original Paper

Abstract

The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC 2 BC 1 HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).

Keywords

Cupriavidus metallidurans CH34 Arsenic resistance ArsR Gene expression Metal binding 

Notes

Acknowledgments

This work was supported by the US DOE Office of Science and Office of Basic Energy Sciences under Contract No. DE-AC-02-98CH10886. S. M. was supported by the AWM Ph.D grant from SCK.CEN.

Supplementary material

10482_2009_9313_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2415 kb)

References

  1. Broer S, Ji GY, Broer A, Silver S (1993) Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 175:3480–3485PubMedGoogle Scholar
  2. Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986PubMedGoogle Scholar
  3. Corbisier P, van der Lelie D, Borremans B et al (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244. doi: 10.1016/S0003-2670(98)00725-9 CrossRefGoogle Scholar
  4. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525. doi: 10.1093/nar/9.23.6505 PubMedCrossRefGoogle Scholar
  5. Ji GY, Silver S (1992a) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 89:9474–9478. doi: 10.1073/pnas.89.20.9474 PubMedCrossRefGoogle Scholar
  6. Ji GY, Silver S (1992b) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694PubMedGoogle Scholar
  7. Karagas MR, Tosteson TD, Blum J, Morris JS, Baron JA, Klaue B (1998) Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a US population. Environ Health Perspect 106(Suppl 4):1047–1050. doi: 10.2307/3434150 PubMedCrossRefGoogle Scholar
  8. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  9. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410. doi: 10.1016/S0168-6445(03)00045-7 PubMedCrossRefGoogle Scholar
  10. Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) In: Schwartz E (ed) Microbial megaplasmids, Chapter 19. Springer-Verlag, Berlin/Heidelberg FRG, p 320. ISBN 978-3-540-85466-1Google Scholar
  11. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425. doi: 10.1128/JB.00375-07 PubMedCrossRefGoogle Scholar
  12. Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, Rosen BP (2007) Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J Biol Chem 282:34346–34355. doi: 10.1074/jbc.M706565200 PubMedCrossRefGoogle Scholar
  13. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608. doi: 10.1128/AEM.71.2.599-608.2005 PubMedCrossRefGoogle Scholar
  14. Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR (1994) Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res 22:2576–2586. doi: 10.1093/nar/22.13.2576 PubMedCrossRefGoogle Scholar
  15. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26. doi: 10.1016/S0269-7491(00)00177-9 PubMedCrossRefGoogle Scholar
  16. van der Lelie D, Regniers L, Borremans B, Provoost A, Verschaeve L (1997) The VITOTOX test, an SOS bioluminescence Salmonella typhimurium test to measure genotoxicity kinetics. Mutat Res 389:279–290PubMedGoogle Scholar
  17. Xu C, Shi W, Rosen BP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271:2427–2432. doi: 10.1074/jbc.271.5.2427 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yian-Biao Zhang
    • 1
  • Sébastien Monchy
    • 1
    • 3
  • Bill Greenberg
    • 1
  • Max Mergeay
    • 3
  • Oleg Gang
    • 2
  • Safiyh Taghavi
    • 1
  • Daniel van der Lelie
    • 1
    Email author
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA
  3. 3.Laboratory for MicrobiologyCenter of Studies for Nuclear Energy, SCK.CENMolBelgium

Personalised recommendations