Antonie van Leeuwenhoek

, Volume 95, Issue 3, pp 263–273 | Cite as

French Jura flor yeasts: genotype and technological diversity

  • Claudine Charpentier
  • Anne Colin
  • Anne Alais
  • Jean-Luc Legras
Original Paper


Fifty-four Saccharomyces cerevisiae strains were isolated from Jura “Vin Jaune” velum and characterized by conventional physiological and molecular tests including ITS RFLP and sequence analysis, karyotyping and inter delta typing. ITS RFLP and sequence revealed a specific group of related strains different from the specific profile of Sherry flor yeast caused by a 24 bp deletion in the ITS1 region described by Esteve-Zarzoso et al. (Antonie Van Leeuwenhoek 85:151–158, 2004). Interdelta typing, the most discriminative method, revealed a high diversity of Jura flor yeast strains and gathered strains in clusters unequally shared between the northern and southern part of the Jura vineyard. The assessment of phenotypic diversity among the isolated strains was investigated for three wine metabolites (ethanal, acetic acid, and sotolon) from micro scale velum tests. Except at an early stage of ageing, the production of these metabolites was not correlated to the five genetic groups obtained by interdelta typing, but correlated to the cellar where strains had been isolated. The different strains isolated in a cellar produced mostly one type of velum (thin or thick, grey or white); but thin and grey velums, recognized as responsible for high quality wines, were obtained more frequently for one of the five groups of delta genotypes.


Yeast Molecular polymorphism Interdelta typing Karyotyping Flor yeast Velum Sotolon 



The authors would like to thank A. Querol for providing Spanish flor yeast strains. This work would not have been possible without the active help of the people of the Laboratoire d’Analyses Départementales de Poligny, Jura.


  1. Arbault B, Levaux J, Paillot D (1975) Les vins jaunes du Jura. Rapport d’étude. Laboratoire départemental d’analyses agricoles, PolignyGoogle Scholar
  2. Ayoub MJ, Legras JL, Saliba R, Gaillardin C (2006) Application of multi locus sequence typing to the analysis of the biodiversity of indigenous Saccharomyces cerevisiae wine yeasts from Lebanon. J Appl Microbiol 100:699–711. doi: 10.1111/j.1365-2672.2006.02817.x PubMedCrossRefGoogle Scholar
  3. Bidan P, Andre L (1954) Etude sur les levures à voile des vins jaunes du Jura. Conference Proceedings, IXème COngrès International des Industries Agricoles, Madrid, pp 1661–1670Google Scholar
  4. Blondin B, Vezinhet F (1988) Identification de souches de levures oenologiques par leurs caryotypes en électrophorèse en champ pulsé. Rev Fr Oenol 115:7–11Google Scholar
  5. Bravo F (1984) Consumo de glicerina por levaduras de flor en vinos finos. Alimentaria 156:19–24Google Scholar
  6. Cortes MB, Moreno J, Zea L, Moyano L, Medina M (1998) Changes in aroma compounds of Sherry wines during their biological ageing carried out by Saccharomyces cerevisiae races bayanus and capensis. J Agric Food Chem 46:2389–2394. doi: 10.1021/jf970903k CrossRefGoogle Scholar
  7. Dos Santos AM, Feuillat M, Charpentier C (2000) Flor yeast metabolism in a model system similar to cellar ageing of the french «“Vin Jaune” » :evolution of some by-products, nitrogen compounds and polysaccharides. Vitis 39:129–134Google Scholar
  8. Dubernet M (1976) Dosage automatique de l’acidité volatile dans les vins. Conn Vigne Vin 10:297–309Google Scholar
  9. Dubois P, Rigaud J, Dekimpe J (1976) Identification de la di-méthyl-4, 5 tétrahydrafuranedione-2, 3 dans le “Vin Jaune” du Jura. Lebenson Wiss Technol 9:366–368Google Scholar
  10. Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:1329–1337CrossRefGoogle Scholar
  11. Esteve-Zarzoso B, Peris-Toran MJ, Garcia-Maiquez E, Uruburu F, Querol A (2001) Yeast population dynamics during the fermentation and biological ageing of Sherry wines. Appl Environ Microbiol 67:2056–2064. doi: 10.1128/AEM.67.5.2056-2061.2001 PubMedCrossRefGoogle Scholar
  12. Esteve-Zarzoso B, Fernandez-Espinar T, Querol A (2004) Authentication and identification of Saccharomyces « flor » yeast races in sherry ageing. Antonie Van Leeuwenhoek 85:151–158. doi: 10.1023/ PubMedCrossRefGoogle Scholar
  13. Etievant PX (1979) Constituants volatils du “Vin Jaune” : identification d’acétals dérivés du glycérol. Lebenson Wiss Technol 12:115–120Google Scholar
  14. Fagan GL, Kepner RE, Webb AD (1981) Biosynthesis of certain gamma-substituted-gamma-butyrolactones present in film Sherries. Am J Enol Vitic 32:163–167Google Scholar
  15. Fernandez-Espinar T, Esteve-Zarzoso B, Querol A, Bario E (2000) RFLP analysis of the ribosomal internal transcribed spacers and the 5.8SrRNA region of the genus Saccharomyces : a fast method for species identification and differentiation of flor yeasts. Antonie Van Leeuwenhoek 78:87–97. doi: 10.1023/A:1002741800609 CrossRefGoogle Scholar
  16. Fidalgo M, Barrales RR, Ibeas JI, Jimenez J (2006) Adaptative evolution by mutations in the FLO11 gene. Proc Natl Acad Sci USA 103:1228–11233. doi: 10.1073/pnas.0601713103 CrossRefGoogle Scholar
  17. Guichard E, Pham TT (1993) Quantitative determination of sotolon in wines by high-performance chromatography. Chromatographia 37:539–542. doi: 10.1007/BF02275793 CrossRefGoogle Scholar
  18. Ibeas JI, Lozano I, Perdigones F, Jimenez J (1997) Dynamics of flor yeast populations during the biological ageing of Sherry wines. Am J Enol Vitic 48:75–79Google Scholar
  19. Ishigami M, Nakagawa Y, Hayakawa M, Iimura Y (2006) FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci Biotechnol Biochem 70:660–666. doi: 10.1271/bbb.70.660 PubMedCrossRefGoogle Scholar
  20. Legras JL, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 221:249–255. doi: 10.1016/S0378-1097(03)00205-2 PubMedCrossRefGoogle Scholar
  21. Legras JL, Ruh O, Merdinoglu D, Karst F (2005) Selection of hypervariable microsatellite loci for the characterisation of Saccharomyces cerevisiae strains. Int J Food Microbiol 102:73–83. doi: 10.1016/j.ijfoodmicro.2004.12.007 PubMedCrossRefGoogle Scholar
  22. Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine, Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16:2091–2102. doi: 10.1111/j.1365-294X.2007.03266.x PubMedCrossRefGoogle Scholar
  23. Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W (2007) Genetically different wine yeasts isolated from Austrian vine—growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res 7:953–965. doi: 10.1111/j.1567-1364.2007.00240.x PubMedCrossRefGoogle Scholar
  24. Martin B, Etievant PX, Le Quéré JL, Schlich P (1992) More clues about sensory impact of sotolon in some flor Sherry wines. J Agric Food Chem 40:475–478. doi: 10.1021/jf00015a023 CrossRefGoogle Scholar
  25. Martinez P, Codon AC, Perez I, Benitez T (1995) Physiological and molecular characterization of flor yeasts polymorphism of “flor” yeast populations. Yeast 11:1399–1411. doi: 10.1002/yea.320111408 PubMedCrossRefGoogle Scholar
  26. Martínez C, Cosgaya P, Vásquez C, Gac S, Ganga A (2007) High degree of correlation between molecular polymorphism and geographic origin of wine yeast strains. J Appl Microbiol 103:2185–2195. doi: 10.1111/j.1365-2672.2007.03493.x PubMedCrossRefGoogle Scholar
  27. Mesa JJ, Infante JJ, Rebordinos L, Cantoral JM (1999) Characterization of yeasts involved in the biological ageing of Sherry wines. Lebenson Wiss Technol 32:114–120. doi: 10.1006/fstl.1998.0514 CrossRefGoogle Scholar
  28. Mesa JJ, Infante JJ, Rebordinos L, Sanchez JA, Cantoral JM (2000) Influence of the yeast genotypes on enological characteristic of Sherry wines. Am J Enol Vitic 51:15–21Google Scholar
  29. Moreno JA, Zea L, Moyano L, Medina M (2005) Aroma compounds as markers of the changes in Sherry wines subjected to biological ageing. Food Contr 14:333–338. doi: 10.1016/j.foodcont.2004.03.013 CrossRefGoogle Scholar
  30. Nadal D, Colomer B, Piña B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62:1944–1950PubMedGoogle Scholar
  31. Naumova ES, Ivannikova YV, Naumov GI (2005) Genetic differentiation of the Sherry yeasts Saccharomyces cerevisiae. Appl Biochem Microbiol 41:578–582. doi: 10.1007/s10438-005-0105-6 CrossRefGoogle Scholar
  32. Pham TT, Guichard E, Schlich P, Charpentier C (1995) Optimal conditions of the formation of sotolon from α-ketobutyric acid in the french “Vin Jaune”. J Agric Food Chem 43:2616–2619. doi: 10.1021/jf00058a012 CrossRefGoogle Scholar
  33. Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26. doi: 10.1016/S0378-1097(03)00928-5 PubMedCrossRefGoogle Scholar
  34. White TJ, Lee S, Taylor J (1990) PCR protocols. A guide to methods and applications. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) Amplification and direct sequencing of fungal Ribosomal RNA genes for phylogenetics. Academic Press, San Diego, pp 315–322Google Scholar
  35. Zara S, Farris A, Budroni M, Bakalinski AT (2002) HSP12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae. Yeast 19:269–276. doi: 10.1002/yea.831 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Claudine Charpentier
    • 1
    • 2
  • Anne Colin
    • 3
  • Anne Alais
    • 2
  • Jean-Luc Legras
    • 2
  1. 1.IUVVUniversité de BourgogneDijonFrance
  2. 2.UMR1131 Santé de la Vigne et Qualité du Vin, INRAUniversité Louis Pasteur de StrasbourgColmarFrance
  3. 3.Laboratoire de Recherches, Moët & ChandonEpernayFrance

Personalised recommendations