Antonie van Leeuwenhoek

, Volume 95, Issue 2, pp 121–133 | Cite as

Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile

  • Chinyere K. Okoro
  • Roselyn Brown
  • Amanda L. Jones
  • Barbara A. Andrews
  • Juan A. Asenjo
  • Michael Goodfellow
  • Alan T. Bull
Original Paper


The Atacama Desert presents one of the most extreme environments on Earth and we report here the first extensive isolations of actinomycetes from soils at various locations within the Desert. The use of selective isolation procedures enabled actinomycetes to be recovered from arid, hyper-arid and even extreme hyper-arid environments in significant numbers and diversity. In some cases actinomycetes were the only culturable bacteria to be isolated under the conditions of this study. Phylogenetic analysis and some phenotypic characterisation revealed that the majority of isolates belonged to members of the genera Amycolatopsis, Lechevalieria and Streptomyces, a high proportion of which represent novel centres of taxonomic variation. The results of this study support the view that arid desert soils constitute a largely unexplored repository of novel bacteria, while the high incidence of non-ribosomal peptide synthase genes in our isolates recommend them as promising material in screening for new bioactive natural products.


Culturable actinomycetes Atacama Desert Hyper-arid soils 



CKO is grateful to the Nigerian Petroleum Development Fund for a National Biotechnology Scholarship while ATB is indebted to The Leverhulme Trust for the award of an Emeritus Fellowship. We thank three anonymous reviewers for their constructive comments.


  1. Antony-Babu S, Goodfellow M (2008) Biosystematics of alkaliphilic streptomycetes isolated from several locations across a beach and dune sand system. Antonie Van Leeuwenhoek 94:581–591. doi: 10.1007/s10482-008-9277-4 PubMedCrossRefGoogle Scholar
  2. Athlaye M, Lacey J, Goodfellow M (1981) Selective isolation and enumeration of actinomycetes using rifamycin. J Appl Bacteriol 51:289–299Google Scholar
  3. Avery BW, Bascomb CL (1982) Soil survey, Technical monograph No. 6. Soil survey laboratory methods, Sect. 3.7Google Scholar
  4. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24. doi: 10.1007/s00248-004-0249-6 PubMedCrossRefGoogle Scholar
  5. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26Google Scholar
  6. de Boer L, Dijkhuizen L, Grobben G, Goodfellow M, Stachebrandt E, Parlett JH, Whitehead D, Witt D (1990) Amycolatopsis methanolica sp. nov., a facultative methylotrophic actinomycete. Int J Syst Bacteriol 40:194–204PubMedGoogle Scholar
  7. Boudjella H, Bouti K, Zitouni A, Matthieu F, Labrihi A, Sabaou N (2006) Taxonomy and chemical characterisation of antibiotics of Streptosporangium Sg10 isolated from a Saharan soil. Microbiol Res 16:288–298. doi: 10.1016/j.micres.2005.10.004 CrossRefGoogle Scholar
  8. Bull AT (ed) (2004) Microbial diversity and bioprospecting. ASM Press, Washington, pp 1–496Google Scholar
  9. Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499. doi: 10.1016/j.tim.2007.10.004 PubMedCrossRefGoogle Scholar
  10. Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges and future directions. Antonie Van Leeuwenhoek 87:65–79. doi: 10.1007/s10482-004-6562-8 CrossRefGoogle Scholar
  11. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525. doi: 10.1111/j.1462-2920.2005.00921.x PubMedCrossRefGoogle Scholar
  12. Chun J (1995) Computer-assisted classification and identification of actinomycetes. Ph. D. Thesis, University of Newcastle, UKGoogle Scholar
  13. Chun J, Kim SB, Oh Y, Seng C-N, Lee D-H, Bae KS, Lee K-J, Kang S-O, Hah YC, Goodfellow M (1999) Amycolatopsis thermoflava sp. nov., a novel soil actinomycetes from Hainan Island, China. Int J Syst Bacteriol 49:1369–1373PubMedGoogle Scholar
  14. Clarke JDA (2006) The antiquity of the aridity in the Chilean Atacama Desert. Geormophology 73:101–114. doi: 10.1016/j.geomorph.2005.06.008 CrossRefGoogle Scholar
  15. Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res 112:G04S17. doi: 10.1029/2006JG000311
  16. Curtis TP, Sloan WT, Scannel JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499. doi: 10.1073/pnas.142680199 PubMedCrossRefGoogle Scholar
  17. Demergasso C, Escudero L, Casamajor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tbenquiche (Salar de Atacama). Extremophiles 12:491–504. doi: 10.1007/s00792-008-0153-y PubMedCrossRefGoogle Scholar
  18. Dietz A, Mathews J (1971) Classification of Streptomyces spore surfaces into five groups. Appl Environ Microbiol 21:527–533Google Scholar
  19. Drees KP, Neilsen JW, Bentacourt J, Quade J, Maier RM, Pryor BM, Henderson DA (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908. doi: 10.1128/AEM.01305-06 PubMedCrossRefGoogle Scholar
  20. Felsenstein J (1985) Confidence limits on phylogeny: an appropriate use of the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefGoogle Scholar
  21. Felsenstein J (1993) PHYLIP-Phylogenetic inference package version 3.5.1 (available at
  22. Felsenstein J, Churchill G (1996) A hidden Markov model approaches to variation among sites in rate of evolution. Mol Biol Evol 13:93–104PubMedGoogle Scholar
  23. Fiedler HP, Bruntner C, Bull AT, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of new secondary metabolites. Antonie Van Leeuwenhoek 87:37–42. doi: 10.1007/s10482-004-6538-8 PubMedCrossRefGoogle Scholar
  24. Goodfellow M, Kim SB, Minnikin DE, Whitehead D, Zhou ZH, Mattinson-Rose AD (2001) Amycolatopsis sacchari sp nov., a moderately thermophilic actinomycete isolated from vegetable matter. Int J Syst Evol Microbiol 51:187–193PubMedGoogle Scholar
  25. Goodfellow M, Kumar Y, Labeda DP, Sembiring L (2007) The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores. Antonie Van Leeuwenhoek 92:173–199. doi: 10.1007/s10482-007-9146-6 PubMedCrossRefGoogle Scholar
  26. Gordon RE, Mihm JM (1962) Identification of Nocardia caviae (Eriksen) nov.comb. Ann N Y Acad Sci 98:628–636. doi: 10.1111/j.1749-6632.1962.tb30585.x CrossRefGoogle Scholar
  27. Gordon RE, Barnett DA, Handerhan JE, Pang C-N (1974) Nocardia coeliaca, Nocardia autotrophica and nocardin strain. Int J Syst Bacteriol 24:56–63Google Scholar
  28. Hartley AJ, Chong G, Houston J, Mather AF (2005) 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J Geol Sci 162:421–424. doi: 10.1144/0016-764904-071 CrossRefGoogle Scholar
  29. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322. doi: 10.2323/jgam.29.319 CrossRefGoogle Scholar
  30. Houston J (2006) Evaporation in the Atacama desert: an empirical study of spatio-temporal variations and their causes. J Hydrol (Amst) 330:402–412. doi: 10.1016/j.jhydrol.2006.03.036 CrossRefGoogle Scholar
  31. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous mycelia is a fluctuating characteristic. J Bacteriol 57:141–145Google Scholar
  32. Kelly KL (1958) Centroid notations for the revised ISCC-NBS colour name blocks. J Res Nat Bur Stand USA 61:472Google Scholar
  33. Kim SB, Falconer C, Williams E, Goodfellow M (1998) Streptomyces thermocaboxydans sp nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68PubMedGoogle Scholar
  34. Kluge AG, Farris FG (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32. doi: 10.2307/2412407 CrossRefGoogle Scholar
  35. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramastu K (2001) Whole genome sequencing of methicillin-resistant Staphylcooccus aureus. Lancet 357:1225–1240. doi: 10.1016/S0140-6736(00)04403-2 PubMedCrossRefGoogle Scholar
  36. Küster E (1959) Outline of a comparative study of criteria used in characterisation of the actinomycetes. Int Bull Bacteriol Nomen Taxon 9:97–104Google Scholar
  37. Küster E, Williams ST (1964) Selection of media for isolation of streptomycetes. Nature 202:928–929. doi: 10.1038/202928a0 CrossRefGoogle Scholar
  38. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148Google Scholar
  39. Lee JY, Moon SS, Yun BS, Yoo ID, Hwang BK (2004) Thiobutacin, a novel antifungal and antioomycete antibiotic from Lechevalieria aerocolonigenes. J Nat Prod 67:2076–2078. doi: 10.1021/np049786v PubMedCrossRefGoogle Scholar
  40. Lester ED, Satoini M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708. doi: 10.1016/j.soilbio.2006.09.020 CrossRefGoogle Scholar
  41. Locci R (2006) Actinomycete spores. In: Encyclopedia of life sciences. Wiley Chichester (DOI: 10.1038/nng.els.004237)
  42. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440. doi: 10.1073/pnas.0611525104 PubMedCrossRefGoogle Scholar
  43. Lu Z, Shi Y, Zhang Y, Zhou Z, Lu Z, Li W, Huang Y, Rodriguez C, Goodfellow M (2005) Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp nov. Int J Syst Evol Microbiol 55:1605–1610PubMedCrossRefGoogle Scholar
  44. McKay CP, Freedman EI, Gómez-Silva B, Cáceres-Villanueva L, Andersen DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observation including the El Niňo of 1997–1998. Astrobiology 3:393–406. doi: 10.1089/153110703769016460 PubMedCrossRefGoogle Scholar
  45. Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245. doi: 10.1016/j.femsec.2005.03.011 PubMedCrossRefGoogle Scholar
  46. Navarro-Gonzalez R, Rainey F, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gómez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile and the dry limit of microbial life. Science 302:1018–1021. doi: 10.1126/science.1089143 PubMedCrossRefGoogle Scholar
  47. Onaka H (2006) Biosynthesis of heterocyclic antibiotics in actinomycetes and an approach to synthesize the natural compounds. Actinomycetologia 20:62–71. doi: 10.3209/saj.20.62 CrossRefGoogle Scholar
  48. Orchard VA, Goodfellow M, Williams ST (1977) Selective isolation and occurrence of nocardiae in soil. Soil Biol Biochem 9:233–238. doi: 10.1016/0038-0717(77)90027-X CrossRefGoogle Scholar
  49. Pridham JN, Hesseltine CW, Benedict RG (1958) A guide for the classification of Streptomyces according to the selected groups. Appl Microbiol 6:52–79PubMedGoogle Scholar
  50. Reed JR, Cummings RW (1945) Soil-reaction-glass electrode and colorimetric methods for determining pH values of soil. Soil Sci 59:97–104. doi: 10.1097/00010694-194501000-00015 CrossRefGoogle Scholar
  51. Saitou N, Nei M (1987) The neighbour-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  52. Sanchez C, Mendez C, Salas JA (2006) Engineering biosynthetic pathways to generate antitumor indolocarbazole derivatives. J Ind Microbiol Biotechnol 33:560–568. doi: 10.1007/s10295-006-0092-5 PubMedCrossRefGoogle Scholar
  53. Sembiring L, Ward AC, Goodfellow M (2000) Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria. Antonie Van Leeuwenhoek 78:353–366. doi: 10.1023/A:1010226515202 PubMedCrossRefGoogle Scholar
  54. Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  55. Tan GYA, Ward AC, Goodfellow M (2006) Exploration of Amycolatopsis diversity in soil using genus specific primers and novel selective media. Syst Appl Microbiol 29:557–569. doi: 10.1016/j.syapm.2006.01.007 PubMedCrossRefGoogle Scholar
  56. Tresner HD, Davies MC, Backus EJ (1961) Electron microscopy of Streptomyces spore morphology and its role in species differentiation. J Bacteriol 81:70–80PubMedGoogle Scholar
  57. Van de Peer Y, De Wacther R (1994) TreeCon for windows: a software package for the construction and drawing of evolutionary trees for the microsoft windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  58. Vickers JC, Williams ST, Ross GW (1984) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological biochemical and biomedical aspects of actinomycetes. Academic Press, Orlando, pp 553–561Google Scholar
  59. Wang W, Zhang Z, Tang Q, Mao J, Wei D, Huang Y, Liu Z, Shi Y, Goodfellow M (2007) Lechevalieria xinjiangensis sp nov; a novel actinomycete isolated from radiation-polluted soil in China. Int J Syst Evol Microbiol 57:2819–2822. doi: 10.1099/ijs.0.65134-0 PubMedCrossRefGoogle Scholar
  60. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. doi: 10.1007/s002030100345 PubMedCrossRefGoogle Scholar
  61. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  62. Wellington EMH, Williams ST (1978) Preservation of actinomycete inoculum in frozen glycerol. Microbiol Lett 6:51–157Google Scholar
  63. Williams ST, Davies FL, Hall DM (1969) A practical approach to the taxonomy of actinomycetes isolated from soil. In: Sheals JG (ed) The soil ecosystem. The Systematics Association, London, pp 107–117Google Scholar
  64. Williams ST, Goodfellow M, Alderson G (1989) In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2452–2492Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chinyere K. Okoro
    • 1
  • Roselyn Brown
    • 1
  • Amanda L. Jones
    • 1
  • Barbara A. Andrews
    • 2
  • Juan A. Asenjo
    • 2
  • Michael Goodfellow
    • 1
  • Alan T. Bull
    • 3
  1. 1.School of BiologyUniversity of NewcastleNewcastle upon TyneUK
  2. 2.Department of Chemical Engineering and BiotechnologyUniversity of ChileSantiagoChile
  3. 3.Department of BiosciencesUniversity of KentCanterburyUK

Personalised recommendations